Normas del foro apurados.com
Prohibida la publicación de claves , de sofware y de informaciones para el pirateo. El Uso De Estos Foros Requiere La Obligada Lectura Y Aceptación De Estas Normas Normas
Presentaciones del foro
""MUY IMPORTANTE"" (Atención todo aquel usuario que se registre debe Pasarse Por Presentaciones y Presentarte a los Compañeros de lo contrario será baneado y borrada su cuenta. PRESÉNTATE

Retroceder   apurados.com > Acerca del foro > Tutoriales > Tutoriales

JnjSite.com: Nueva versión del sencillo mensaje de aceptar cookies para tu web
Respuesta
 
Herramientas Desplegado
  #1  
Antiguo 13-May-2020, 20:27
Avatar de winche
winche winche está desconectado
 
Fecha de Ingreso: 12-August-2019
Mensajes: 7,184
Gracias: 0
Agradeció 7 veces en 6 publicaciones
Moil La megaguía para construirte un PC desde cero en 2020: la placa base

La megaguía para construirte un PC desde cero en 2020: la placa base

La placa base da forma, literalmente, a los cimientos de nuestros ordenadores. Los usuarios que no están familiarizados con el hardware no suelen darle la importancia que merece porque se fijan más en otros componentes a priori más llamativos, como la CPU o la tarjeta gráfica. Y es comprensible que sea así, pero, en realidad, el rol de la placa base es crucial. De hecho, en gran medida de ella dependen la estabilidad y la capacidad de actualización de nuestro PC.
Los entusiastas del hardware no solo suelen prestar mucha atención a este componente, sino que a menudo también le dedican una parte importante de su presupuesto. Y tiene todo el sentido si tenemos presente que una placa base a la última y de buena calidad puede permitirnos actualizar en el futuro la mayor parte de los componentes de nuestro equipo, incluido el procesador, sin necesidad de cambiarla. Y, además, como veremos más adelante en este texto, puede tener un impacto profundo en nuestra experiencia.

Este artículo es la primera entrega de una guía extensa en la que todos los componentes y los principales periféricos de un PC tendrán su dosis de protagonismo. Nuestra intención es ayudar a los usuarios que han decidido montar un equipo a la medida a encontrar los componentes que resuelven mejor sus necesidades y encajan mejor en su presupuesto, y para lograrlo dedicaremos a la mayor parte de ellos un artículo en exclusiva. Estas son las entregas en las que estamos trabajando y el orden en el que las iremos publicando:

La placa base
El microprocesador y la refrigeración
La memoria principal
La tarjeta gráfica
El almacenamiento secundario
La caja y la fuente de alimentación
El monitor
El teclado y el ratón



El chipset: el auténtico cerebro de la placa base
Poner a punto una placa base de calidad requiere un esfuerzo importante en materia de ingeniería. De hecho, no cabe duda de que es uno de los componentes más complejos de un ordenador. En este artículo indagaremos con cierta profundidad en algunos de sus elementos, pero para ir familiarizándonos con ella nos viene bien saber que en su estructura básica destacan la placa de circuito impreso, o PCB (Printed Circuit Board), que es el sustrato no conductor de la carga eléctrica sobre el que se colocan los demás componentes; los circuitos integrados, zócalos, condensadores y los demás dispositivos eléctricos y electrónicos indispensables para que los subsistemas de la placa base lleven a cabo su función; y, por último, las pistas o buses de material conductor que se responsabilizan de transportar la información entre unos componentes y otros.

El chipset de la placa base se responsabiliza de administrar el tráfico de la información que intercambian algunos de los subsistemas de nuestro PC

Entre todos estos componentes hay uno al que merece la pena que prestemos mucha atención debido a que es el auténtico cerebro de la placa base: el chipset. Identificarlo sobre la superficie del PCB es sencillo porque suele ser el circuito integrado más grande de todos. Eso sí, en las placas base actuales si queremos verlo tendremos que retirar previamente el disipador que suele ocultarlo para ayudarle a evacuar con eficacia la energía que disipa en forma de calor. En cualquier caso, más allá de su tamaño y su complejidad, el chipset es importante debido a la función que lleva a cabo: se responsabiliza de administrar el tráfico de la información que intercambian algunos de los subsistemas de nuestro PC.

Tradicionalmente el chipset estaba constituido por dos circuitos integrados: el northbridge y el southbridge. De ahí su nombre original (chipset en inglés significa ‘conjunto de chips’). El primero y más complejo de ellos, el northbridge, se encargaba esencialmente de administrar el tráfico de datos entre la CPU, la memoria principal y el subsistema gráfico. El otro chip, el southbridge, estaba conectado al northbridge a través de un enlace de alto rendimiento y quedaba relegado a controlar la comunicación con los demás subsistemas del equipo, como las tarjetas que podíamos instalar en las ranuras de expansión, los puertos USB y SATA, el chip de audio o la controladora de red, entre otros dispositivos.



La razón por la que en el párrafo anterior he utilizado los verbos en pasado, y no en presente, es que prácticamente todos los chipsets para las placas base actuales utilizan un solo circuito integrado, y no dos. Buena parte de la lógica que incorporaba en su interior el northbridge ha pasado a estar integrada en el interior del encapsulado de la CPU, por lo que ya no son necesarios los dos chips a los que recurrían las placas base hace unos años. Con uno solo que lleve a cabo esencialmente las tareas que desempeñaba el southbridge es suficiente.

Una consecuencia muy interesante que tiene la integración de la lógica del northbridge en el procesador es que este último ahora está conectado de forma directa mediante buses de alto rendimiento a la memoria principal y la lógica gráfica externa. Ya no es necesario que otro circuito integrado actúe como intermediario. Aun así, el chipset sigue responsabilizándose de la administración del tráfico generado por buena parte de los subsistemas de nuestros ordenadores, como son las ranuras PCI Express que no están destinadas a la tarjeta gráfica o los puertos SATA, USB y Thunderbolt, entre otras opciones. Por esta razón, la comunicación entre la CPU y el PCH (Platform Controller Hub), que es el nombre técnico que recibe el chipset, también se lleva a cabo a través de un enlace de alto rendimiento que tiene como objetivo incrementar la velocidad de transferencia de los datos y minimizar la latencia.

La comunicación entre la CPU y el PCH se lleva a cabo a través de un enlace de alto rendimiento para incrementar la velocidad de transferencia de los datos y minimizar la latencia

Como podemos intuir, el PCH es un circuito integrado complejo cuyo consumo y capacidad de disipación de energía en forma de calor no son en absoluto despreciables. De hecho, los últimos chipsets de Intel para ordenadores de sobremesa tienen un TDP de 6 vatios, y, aunque no es lo habitual, algunos PCH tanto de Intel como de AMD requieren refrigeración activa para mantener su temperatura bajo control cuando el estrés al que están siendo sometidos es alto. Un apunte breve antes de seguir adelante: la refrigeración pasiva recurre únicamente a elementos que apenas están sometidos a estrés mecánico, como los disipadores o los conductos de transporte de calor, para refrigerar el circuito integrado al que está asociada. Sin embargo, la refrigeración activa además requiere que un ventilador «sople» sobre el disipador para optimizar la transferencia de energía térmica entre el núcleo del circuito integrado, el disipador y el aire.

La estrecha cooperación que llevan a cabo de forma permanente la CPU y el PCH tiene una consecuencia que a los usuarios nos interesa conocer: entre estos dos elementos de nuestros ordenadores existe una relación de interdependencia. Esto significa, sencillamente, que no todos los chipsets pueden convivir con todos los microprocesadores de una misma marca. Afortunadamente, cuando Intel y AMD lanzan una nueva familia de procesadores que mantiene el zócalo utilizado por la generación anterior existe la posibilidad de que algunos de los chipsets que han colocado previamente en el mercado puedan trabajar codo con codo con las nuevas CPU. Cuando se da esta situación lo único que tenemos que hacer los usuarios es actualizar la BIOS de nuestra placa base recurriendo a la actualización oficial que suelen publicar los fabricantes de placas.

El PCH también condiciona otras características muy importantes de la arquitectura de nuestros ordenadores, como son la cantidad máxima de líneas PCI Express y puertos SATA y USB, entre otros enlaces, que van a estar disponibles. Actualmente tanto AMD como Intel tienen un porfolio amplio de chipsets que aglutina soluciones diseñadas para los equipos básicos, los PC de gama media y las máquinas de alto rendimiento. En la siguiente tabla hemos recogido las especificaciones de algunos de los modelos del catálogo de AMD:
AMD TRX40 X399 X570 X470 X370 B450 B350
CPU Ryzen Threadripper 3ª gen. Ryzen Threadripper 1ª y 2ª gen. Ryzen 2ª y 3ª gen. Ryzen hasta 3ª gen. Ryzen hasta 3ª gen. Ryzen hasta 3ª gen. Ryzen hasta 3ª gen.
ZÓCALO sTRX4 TR4 AM4 AM4 AM4 AM4 AM4
MEMORIA DDR4 de cuatro canales con ECC opcional DDR4 de cuatro canales DDR4 de dos canales DDR4 de dos canales DDR4 de dos canales DDR4 de dos canales DDR4 de dos canales
PCI EXPRESS 88 líneas PCIe 4.0 66 líneas PCIe 3.0 / 8 líneas PCIe 2.0 16 líneas PCIe 4.0 12 líneas PCIe 3.0 8 líneas PCIe 3.0 6 líneas PCIe 3.0 6 líneas PCIe 3.0
USB 12 puertos USB 3.2 Gen2 / 4 puertos USB 2.0 2 puertos USB 3.1 Gen2 / 14 puertos USB 3.1 Gen1 / 6 puertos USB 2.0 12 puertos USB 3.1 / 4 puertos USB 2.0 10 puertos USB 3.0 / 2 puertos USB 3.1 / 6 puertos USB 2.0 10 puertos USB 3.0 / 2 puertos USB 3.1 / 6 puertos USB 2.0 6 puertos USB 3.0 / 2 puertos USB 3.1 / 6 puertos USB 2.0 6 puertos USB 3.0 / 2 puertos USB 3.1 / 6 puertos USB 2.0
NVME 2 puertos NVMe x4 2 puertos M.2 2 puertos M.2 2 puertos M.2 2 puertos M.2 2 puertos M.2 2 puertos M.2
SATA 20 puertos 12 puertos 12 puertos 6 puertos 2 puertos 2 puertos 2 puertos
Después de echar un vistazo a los chipsets del porfolio de AMD merece la pena conocer también las características de algunos de los PCH del catálogo de Intel. La siguiente tabla las resume:

INTEL X299 Z390 Z370 Q370 H370 B365 B360
CPU Intel Core serie X Intel Core 8ª y 9ª gen. Intel Core 8ª y 9ª gen. Intel Core 8ª y 9ª gen. Intel Core 8ª y 9ª gen. Intel Core 8ª y 9ª gen. Intel Core 8ª y 9ª gen.
ZÓCALO LGA2066 LGA1151 LGA1151 LGA1151 LGA1151 LGA1151 LGA1151
MEMORIA DDR4 de cuatro canales DDR4 de dos canales DDR4 de dos canales DDR4 de dos canales DDR4 de dos canales DDR4 de dos canales DDR4 de dos canales
PCI EXPRESS 24 líneas PCIe 3.0 24 líneas PCIe 3.0 24 líneas PCIe 3.0 24 líneas PCIe 3.0 20 líneas PCIe 3.0 20 líneas PCIe 3.0 12 líneas PCIe 3.0
USB 10 puertos USB 3.0 / 14 puertos USB 2.0 10 puertos USB 3.1 / 14 puertos USB 2.0 10 puertos USB 3.0 / 14 puertos USB 2.0 10 puertos USB 3.1 / 14 puertos USB 2.0 8 puertos USB 3.1 / 14 puertos USB 2.0 8 puertos USB 3.0 / 14 puertos USB 2.0 6 puertos USB 3.1 / 12 puertos USB 2.0
SATA 8 puertos 6 puertos 6 puertos 6 puertos 6 puertos 6 puertos 6 puertos
TDP 6 vatios 6 vatios 6 vatios 6 vatios 6 vatios 6 vatios 6 vatios
Los módulos reguladores del voltaje y las fases de alimentación eléctrica
La calidad de una placa base está en gran medida condicionada por la sofisticación de su sistema de alimentación eléctrica. Esta característica adquiere una relevancia enorme si tenemos la intención de practicar overclocking debido a que tiene un impacto directo en la estabilidad de nuestro equipo cuando lo sometemos a un estrés intenso. Si nos ceñimos a la alimentación eléctrica hay dos características de una placa base que a los usuarios nos interesa conocer: los módulos reguladores del voltaje y las fases de alimentación eléctrica.
Los módulos reguladores del voltaje, o VRM (Voltage Regulator Module), de las placas base tienen una responsabilidad decisiva: adaptar el voltaje suministrado por la fuente de alimentación a las necesidades específicas de algunos de los componentes más delicados de nuestros ordenadores, como son la CPU y la memoria principal. Si la regulación del voltaje no es precisa estos elementos no funcionarán correctamente. Cuando el voltaje que reciben es inferior al que requieren su estabilidad suele verse comprometida, y cuando es superior pueden verse forzados a disipar más energía en forma de calor, algo que quizá no pueda ser asumido por el sistema de refrigeración. En estas circunstancias en el mejor de los casos el sistema se volverá inestable, y en el peor, si el componente supera su umbral máximo de temperatura, podría quedar dañado irremediablemente.

Este es el reto del VRM: adaptar con precisión el voltaje suministrado por la fuente de alimentación a las necesidades de los componentes más delicados del PC
Los VRM son relativamente fáciles de identificar, siempre y cuando retiremos previamente los disipadores que suelen cubrirlos en las placas base modernas, porque están alojados en la superficie del PCB cerca del procesador y los bancos de memoria. No obstante, una vez que los hayamos localizado comprobaremos que, en realidad, cada uno de ellos es un pequeño circuito en el que intervienen diodos, resistencias, transistores MOSFET, bobinas de ahogo o choque y condensadores. Ya conocemos cuál es el propósito conjunto de estos elementos, por lo que no es necesario que indaguemos en el rol que tiene cada uno de ellos dentro del circuito del módulo regulador del voltaje. Aun así, merece la pena que conozcamos dos pinceladas del componente más importante del VRM: los transistores MOSFET (Metal–Oxide–Semiconductor Field-Effect Transistor).

Los transistores de metal óxido semiconductor con efecto campo, que es lo que significa en castellano el acrónimo MOSFET, se utilizan con mucha frecuencia en microelectrónica para amplificar y conmutar señales eléctricas. De hecho, los microprocesadores y los procesadores gráficos de nuestros PC incorporan en su interior millones de transistores diminutos de un tipo concreto de dispositivos MOSFET conocido como FinFET (Fin Field-Effect Transistor). El rol que tienen estos transistores dentro de los VRM no es otro que comunicarse con el circuito integrado cuya línea de alimentación deben regular, como la CPU, para entregarle exactamente el voltaje que requiere. Un apunte interesante: los transistores MOSFET son los dispositivos del módulo regulador del voltaje que más se calientan, por lo que casi siempre estarán ocultos debajo de un disipador.

La siguiente característica del módulo regulador del voltaje en la que nos interesa indagar son las fases de alimentación eléctrica que implementa. Cada una de estas fases equivale a una etapa de filtrado de la señal eléctrica que tiene como propósito proporcionar al procesador o la memoria principal una alimentación lo más plana y estable posible. La fuente de alimentación se encarga de transformar la corriente alterna que recibe de la red eléctrica en la corriente continua que demandan los elementos de nuestro PC, pero el VRM se ve obligado a reducir el voltaje que recibe de la fuente para adecuarlo a las necesidades específicas del componente al que alimenta.

Un mayor número de fases de alimentación eléctrica, sobre el papel, es mejor, pero también es crucial la calidad de los componentes del VRM
Además del proceso de reducción del voltaje del que ya hemos hablado, el VRM tiene que enfrentarse a un reto adicional: eliminar los picos de la onda que la fuente de alimentación no ha conseguido regular del todo al llevar a cabo la transformación de la corriente alterna en continua. Cada una de las fases de alimentación eléctrica implementadas por los fabricantes de placas base en el VRM actúa como una etapa de rectificación y filtrado que consigue estabilizar un poco más la señal de alimentación. Y esta estrategia tiene una consecuencia muy importante: cuantas más fases de alimentación eléctrica introduzca el VRM, más «limpia» y estable será la señal de alimentación que proporciona al componente al que alimenta.

Los fabricantes de placas base suelen reflejar en las especificaciones de sus propuestas, especialmente si son de gama alta, el número de fases de alimentación que implementan. Pero, curiosamente, la nomenclatura que utilizan adquiere con frecuencia la forma de suma de dos números enteros. Como ejemplo, las placas base de Gigabyte con chipset TRX40 para microprocesadores Ryzen Threadripper de 3ª generación introducen 16+3 fases de alimentación eléctrica. Las primeras 16 fases hacen referencia al número de etapas de filtrado y estabilización de la señal de alimentación de la CPU, y las otras 3 reflejan el número de fases de filtrado de la señal de alimentación que va a parar al controlador de memoria. Un apunte interesante: las tarjetas gráficas incorporan su propio VRM y también suelen utilizar esta última nomenclatura debido a que además del procesador gráfico tienen su propio controlador y memoria local.

Las fases de alimentación eléctrica importan. Mucho. Especialmente si utilizamos una CPU con una cantidad alta de núcleos (12 o más) o queremos practicar overclocking extremo. En estas condiciones un sistema de alimentación eléctrica sofisticado que implementa muchas fases puede garantizarnos la estabilidad que buscamos. Sin embargo, a pesar de su indiscutible importancia, el número de fases no lo es todo en el contexto del VRM. También es crucial la calidad que tienen los componentes del módulo regulador del voltaje, especialmente de los transistores MOSFET, los condensadores y las bobinas. El problema es que para los usuarios es muy difícil valorarla más allá de lo que nos dicen las marcas, que son, lógicamente, parte interesada. En este contexto pueden ayudar los análisis de la prensa especializada y las opiniones vertidas por los usuarios en los foros acerca de la estabilidad que nos ofrece una placa base concreta en un escenario de uso real.

Una placa base bien refrigerada es una placa base mejor
Algunos de los componentes alojados sobre el PCB de las placas base disipan una cantidad de energía en forma de calor que no es en absoluto despreciable. Dos de los elementos que más se calientan son el PCH y los transistores MOSFET del VRM, de los que hemos hablado con anterioridad en este artículo, por lo que buena parte de las placas base actuales recurre a disipadores que ayudan a estos y otros componentes a evacuar con eficacia el calor residual. Llevar a cabo esta tarea de una forma eficaz es imprescindible para evitar que estos elementos superen su umbral máximo de temperatura debido a que, si lo alcanzan y ese valor se sostiene durante el tiempo suficiente, podrían dañarse irremediablemente.

Algunas placas base incorporan en el reverso del PCB una plancha de metal que disipa el calor e incrementa su resistencia estructural
Los fabricantes de placas base suelen tomarse la refrigeración de sus propuestas, sobre todo de las de gama alta, muy en serio. De hecho, algunas placas tienen buena parte de la superficie del PCB recubierta por disipadores. Pero es posible ir incluso un paso más allá. Y es que no es difícil encontrar modelos que recurren a la refrigeración activa, y, por tanto, a los ventiladores, para mantener bajo control la temperatura de algunos componentes, como el PCH. Esta decisión de diseño tiene ventajas e inconvenientes. La ventaja más evidente es que la refrigeración activa suele ser más eficaz que la pasiva, sobre todo si esta última se implementa únicamente con un disipador. Pero el precio a pagar es que el ventilador es un elemento mecánico con una vida útil limitada y, además, por muy silencioso que sea, contribuye a incrementar ligeramente el nivel de ruido emitido por el PC.

Una innovación interesante que algunos fabricantes de placas base están introduciendo en sus modelos de gama alta es un escudo térmico de metal, normalmente de aluminio, fijado al reverso del PCB y que ocupa prácticamente toda la superficie de la placa. Esta plancha de metal puede tener un impacto beneficioso en la habilidad con la que la placa base evacúa el calor disipado por los componentes que más se calientan, pero tiene un beneficio adicional: incrementa la resistencia estructural del PCB. Esta característica es muy interesante si tenemos la intención de refrigerar la CPU con un ventilador voluminoso y pesado, o bien si hemos decidido instalar una tarjeta gráfica con unas dimensiones y un peso importantes. Cualquier mejora ideada para incrementar la robustez del PCB es bienvenida.

La placa base condiciona la conectividad de nuestro PC
Las dos tablas que hemos publicado un poco más arriba en este artículo reflejan con claridad en qué medida el chipset condiciona la conectividad que va a poner en nuestras manos nuestro PC. El PCH establece el número máximo de líneas PCI Express que van a estar disponibles, y el tándem constituido por el procesador y el chipset condiciona la revisión de PCI Express más avanzada implementada en nuestro ordenador. Actualmente la norma de PCI Express más ambiciosa y la que mejores prestaciones nos ofrece es la 4.0, y no cabe duda de que poco a poco se irá generalizando porque estará implementada en la mayor parte de los procesadores y las placas base que llegarán en el futuro (curiosamente algunas de las especificaciones de PCI Express 6.0 se desvelaron a mediados del año pasado).

Las implicaciones del chipset no acaban aquí. Además del número de líneas PCI Express, el PCH también establece el tipo y la cantidad máxima de puertos USB que vamos a poder utilizar, la cantidad y las características de los puertos SATA, y, en ocasiones, también incorpora la lógica de acceso a las redes inalámbricas y de cable. En lo que se refiere a la conectividad el PCH ejerce un rol central, por lo que es importante que antes de elegir una placa base y después de decidir con qué procesador queremos hacernos identifiquemos el chipset que resuelve mejor nuestras necesidades. Cuando sepamos qué chipset nos interesa tendremos que buscar una placa base que lo incorpore y cuyo precio encaje en nuestro presupuesto.

WiFi y sonido integrados: cuándo dan la talla y cuándo es mejor una solución adicional
La calidad del audio integrado en las placas base varía mucho de unos modelos a otros. Las placas básicas suelen integrar un chip de sonido sencillo que puede ser suficiente para quien no da demasiada importancia a este apartado de su PC, pero también hay modelos de gama alta que se apoyan en chips de sonido muy avanzados y DAC de muchísima calidad equiparables a los que podemos encontrar en el interior de algunos componentes de alta fidelidad. Los DAC más frecuentes en las placas base de gama alta son los Sabre de ESS Technology, que pueden ofrecernos una relación señal/ruido de hasta 130 dB, una distorsión armónica total del 0,0001% y la capacidad de procesar archivos PCM con una resolución de 32 bits y una frecuencia de muestreo de hasta 192 kHz.

El DAC integrado en algunas placas base de gama alta nos promete una relación señal/ruido de hasta 130 dB y un THD del 0,0001%
Si elegimos una placa base que incorpora una sección de audio tan cuidada como la que acabo de describir es probable que no necesitemos recurrir a una tarjeta de sonido dedicada. Ni siquiera si somos unos jugones exigentes o nos gusta escuchar nuestra música con la máxima calidad posible. Sin embargo, si optamos por una placa base de las gamas media o de entrada y somos medianamente exigentes con el sonido sí podría ser interesante apostar por una tarjeta de sonido dedicada de cierta calidad. Afortunadamente, las hay con unas especificaciones muy interesantes y precios razonables. Por unos 50 euros ya podemos conseguir una tarjeta de sonido atractiva de marcas como Creative o ASUS, pero si queremos hacernos con una solución avanzada que nos ofrezca la mejor experiencia posible con nuestros juegos, películas y música, y que, además, libere a la CPU de buena parte de la gestión del audio, tendremos que invertir algo más de dinero. Entre 80 y 120 euros hay soluciones de gama media muy atractivas, y si queremos una tarjeta de sonido de gama alta tendremos que invertir en ella de 150 euros en adelante.

Si dejamos a un lado el sonido y nos ceñimos a las controladoras que nos permiten acceder tanto a nuestra red WiFi como a nuestra red de área local cableada el panorama es más amable. Y es que buena parte de las placas base que nos proponen las marcas más respetadas actualmente, como ASUS, Gigabyte, ASRock o MSI, entre otras, incorpora módulos WiFi y controladoras Ethernet de calidad que, con relativa frecuencia, implementan los últimos estándares de conectividad, como WiFi 6 o Ethernet a 10 Gbps. La única razón por la que podría interesarnos instalar en nuestro PC una tarjeta WiFi o Ethernet dedicada es que necesitemos utilizar una norma que no esté soportada por la lógica de red implementada en nuestra placa base. Pero si nos hacemos con un modelo actual de gama media o alta es muy poco probable que necesitemos invertir más dinero para ampliar su conectividad.

Cómo encontrar la placa base idónea
La estabilidad, la conectividad y la capacidad de actualización que tendrá nuestro PC en el futuro están en gran medida condicionadas por la placa base por la que nos decantemos. Ahí reside la complejidad de esta elección. A lo largo de este artículo hemos indagado en las características de este componente que nos parecen más interesantes y que, en nuestra opinión, pueden ayudaros a dar con la placa base idónea. Aun así, y a modo de colofón, este es el procedimiento que os proponemos para conseguir que la búsqueda de la placa base ideal sea un poco más sencilla:

La elección de la placa base debe estar supeditada al procesador que tengamos en mente, por lo que lo ideal es averiguar en primer lugar qué CPU resuelve mejor nuestras necesidades, y a partir de ahí podemos buscar una placa base que sea compatible con ella.
Lo siguiente que haríamos nosotros sería decidir qué chipset compatible con nuestra CPU nos ofrece las prestaciones y la conectividad que aspiramos a alcanzar porque, como hemos visto, entre unos y otros puede haber diferencias significativas. Podemos tomar como ejemplo los chipsets X570 y X470 de AMD. Ambos pueden trabajar con procesadores Ryzen de 3ª generación, pero el primer chipset nos ofrece conectividad PCI Express 4.0, mientras que el segundo se conforma con los algo más modestos enlaces PCI Express 3.0.
Ya hemos elegido nuestra CPU y el chipset que queremos que gobierne nuestra placa base, por lo que ahora os recomendamos que identifiquéis qué parte de vuestro presupuesto queréis dedicar a este componente. La elección del chipset que acabamos de hacer condicionará el precio de la placa. A partir de 60 o 70 euros hay modelos básicos interesantes; entre 120 y 170 euros podemos hacernos con una placa base de gama media/alta; y si queréis un modelo de gama alta y a la última tendréis que invertir en este componente 200 euros o más. De hecho, las placas base para PC más sofisticadas superan con creces esta última cifra.
Una vez que hayáis encontrado varios modelos que encajen en vuestro presupuesto os sugerimos que dediquéis un poco de tiempo a indagar en las características que hemos repasado a lo largo del artículo, como, por ejemplo, su conectividad, la calidad de sus componentes (especialmente de los transistores MOSFET y los condensadores de los módulos reguladores del voltaje), el número de fases de alimentación eléctrica que implementa o la sofisticación de su sistema de refrigeración, entre otras opciones. Una parte de esta información nos la proporcionan los fabricantes, pero para formarnos una idea realista de la calidad global de una placa base lo ideal es recurrir a los análisis de la prensa especializada y a las experiencias que otros usuarios comparten en los foros.


Responder Citando
  #2  
Antiguo 13-May-2020, 20:39
Avatar de winche
winche winche está desconectado
 
Fecha de Ingreso: 12-August-2019
Mensajes: 7,184
Gracias: 0
Agradeció 7 veces en 6 publicaciones
Moil la CPU y la refrigeración

la CPU y la refrigeración

Una de las decisiones más importantes que todos nos vemos obligados a tomar cuando nos embarcamos en el proyecto de montar nuestro propio PC es elegir el procesador que creemos que resolverá mejor nuestras necesidades. Este componente tiene un impacto muy profundo en el rendimiento global del equipo, y, por tanto, también en nuestra experiencia, por lo que una elección desafortunada podría dar al traste con nuestras expectativas. Y, quizá, podría obligarnos a cambiar la CPU de forma prematura.

Este artículo es la segunda entrega de una guía extensa en la que los principales componentes y los periféricos más relevantes de un PC tendrán su dosis de protagonismo. Nuestra intención es ayudar a los usuarios que han decidido montar un equipo a la medida a encontrar los componentes que resuelven mejor sus necesidades y encajan mejor en su presupuesto, y para lograrlo dedicaremos a la mayor parte de ellos un artículo en exclusiva. El protagonista indiscutible de este artículo es el microprocesador de la misma forma en que la primera entrega de la guía giró alrededor de la placa base.
La CPU, en detalle: estas son las características que más nos interesan
El procesador es el componente más complejo de un ordenador si nos ceñimos a los recursos necesarios para diseñar su microarquitectura y fabricarlo. Hay otros dispositivos en nuestros equipos que también involucran tecnologías muy avanzadas, pero parece razonable aceptar que el único capaz de medirse de tú a tú con la CPU si nos atenemos a su complejidad es el procesador gráfico, que protagonizará el artículo de esta guía en el que hablaremos en profundidad de la tarjeta gráfica.

La CPU es el componente más complejo de un ordenador. El único capaz de medirse de tú a tú con él si nos atenemos a su complejidad es el procesador gráfico

Explicar con detalle cómo funciona un microprocesador, cuáles son sus unidades funcionales y cuál es el rol de cada una de ellas requeriría que dedicásemos a este componente varios artículos extensos y complejos. Afortunadamente, no es necesario que nos preocupemos por estos detalles cuando nos proponemos dar con nuestra próxima CPU, pero sí es importante que estemos familiarizados, aunque solo sea mínimamente, con algunos conceptos que nos ayudarán a valorar cuál es la opción que encaja mejor en el escenario de uso en el que pretendemos sacarle partido.

En la siguiente sección de este artículo indagaremos en el porfolio actual de microprocesadores de Intel y AMD, pero antes de hacerlo merece la pena que repasemos las características que nos viene bien conocer para identificar en qué se diferencian unas propuestas de otras. Y también para intuir el impacto que esas especificaciones pueden tener en su rendimiento. Probablemente muchos lectores ya estaréis familiarizados con buena parte de los conceptos y las características de los que vamos a hablar a continuación, pero este es, sin duda, un buen punto de partida para los usuarios que aún no se sienten cómodos con los procesadores.

Fotolitografía
Este término identifica la tecnología de fabricación utilizada en la producción de un microprocesador. Condiciona características tan importantes como son el tamaño de los transistores, el espacio que separa a unos de otros o el tamaño de las puertas lógicas, y todos estamos familiarizados en cierta medida con este concepto debido a que oímos hablar con mucha frecuencia de los nanómetros que tiene una CPU o una GPU.

Los nanómetros ya no reflejan con tanta claridad como hace unos años el desarrollo tecnológico de un circuito integrado

Normalmente una tecnología de fabricación más avanzada tiene menos nanómetros que otra menos sofisticada, pero esta es una simplificación excesiva porque, en realidad, los nanómetros han sido tergiversados por los responsables de marketing de los fabricantes de semiconductores y ya no reflejan con tanta claridad como hace unos años el desarrollo tecnológico de un circuito integrado.


Microarquitectura
Este concepto identifica una implementación concreta de una arquitectura. Los procesadores para ordenadores de sobremesa y portátiles actuales utilizan la arquitectura x86-64 o x64, que es una extensión a 64 bits de la arquitectura x86 original utilizada desde finales de los años 70. Sin embargo, Sunny Cove, de Intel, y Zen 2, de AMD, entre muchas otras opciones, son dos microarquitecturas porque encarnan dos formas diferentes de diseñar un procesador compatible con la arquitectura x86-64. Esta compatibilidad garantiza que los sistemas operativos y las aplicaciones funcionarán correctamente en cualquiera de ellos, al margen de que hayan sido diseñados por Intel o AMD.

Una microarquitectura es una implementación concreta de una arquitectura. Los procesadores actuales utilizan la arquitectura x86-64 o x64, que es una extensión a 64 bits de la arquitectura x86 original

Hay una metáfora culinaria que puede ayudarnos a entender fácilmente la diferencia entre arquitectura y microarquitectura. De alguna forma la arquitectura es la receta que nos indica cómo debemos preparar un plato, mientras que la microarquitectura es la forma concreta en la que cada cocinero prepara su propia versión de ese plato, añadiéndole un toque personal que consigue que un mismo plato esté más o menos rico. Si cambiamos los platos por microprocesadores tenemos lo que buscamos.

Empaquetado
Es la envoltura que contiene al chip de silicio en cuyo interior residen los transistores. El empaquetado también da soporte a las conexiones eléctricas que van a permitir al microprocesador comunicarse con la memoria principal, la lógica gráfica externa y el chipset de la placa base de nuestro ordenador. A través de este último también dialoga con los demás elementos de nuestro PC. La responsable de la microarquitectura es únicamente la empresa que diseña el microprocesador, como pueden ser AMD, Intel o NVIDIA. Sin embargo, en el empaquetado también interviene la compañía que se encarga de fabricar este circuito integrado, que no siempre es la misma empresa que lo diseña.

Núcleo
A diferencia de los microprocesadores que hemos utilizado desde su invención a principios de los años 70, y que tenían un solo núcleo, hace aproximadamente una década y media llegaron las primeras CPU para ordenadores de consumo equipadas con varios núcleos. Cada uno de estos núcleos es una unidad que es capaz de llevar a cabo por sí misma los cálculos y las operaciones que requieren el sistema operativo y las aplicaciones que estamos ejecutando.

De forma intuitiva podemos contemplar cada núcleo como un pequeño procesador que tiene la capacidad de realizar trabajo de forma independiente, pero esta definición no es del todo precisa. Y no lo es debido a que los núcleos de una CPU habitualmente se ven obligados a compartir algunos recursos, como, por ejemplo, la memoria caché de nivel 3, a la que no tienen acceso de forma exclusiva.

Hilo de ejecución ('thread')
También se conocen como subprocesos o hebras, y son secuencias de instrucciones que pueden ser ejecutadas de forma simultánea a otros subprocesos. Los sistemas operativos modernos tienen la capacidad de administrar a la vez la ejecución de varios hilos, de manera que una única aplicación puede iniciar simultáneamente varios subprocesos para llevar a cabo varias tareas simultáneas que persiguen un propósito común. Cada uno de los núcleos de la CPU es capaz de ejecutar en un instante dado uno o dos threads.

Para poder lidiar con dos hilos de ejecución simultáneamente un núcleo de una CPU tiene que implementar la tecnología SMT, que requiere duplicar algunos elementos del núcleo

Para poder lidiar con dos hilos de ejecución simultáneamente un núcleo de un procesador tiene que implementar una tecnología conocida como SMT (Simultaneous Multi-Threading), que requiere duplicar algunos elementos del núcleo. Por esta razón, no todos los procesadores incorporan esta tecnología. Las CPU que tienen el mismo número de núcleos e hilos de ejecución no implementan la tecnología SMT, mientras que las que tienen el doble de threads que de núcleos sí la incorporan. Un último apunte: esta técnica nos ayuda a sacar más partido a los recursos que pone a nuestro alcance la microarquitectura de los procesadores actuales.

Frecuencia de reloj
Este parámetro identifica el ritmo de trabajo de un microprocesador. De igual forma que un director de orquesta, entre otras cosas, marca el ritmo al que deben tocar sus instrumentos los músicos, el procesador y los demás circuitos integrados de nuestros ordenadores trabajan al ritmo que impone el generador de la señal de reloj. Este dispositivo es un pequeño oscilador electrónico diseñado para generar una señal eléctrica que adquiere la forma de pulsos emitidos en intervalos constantes conocidos como ciclos.

La CPU y los demás circuitos integrados de nuestros ordenadores trabajan al ritmo que impone el generador de la señal de reloj
Siguiendo con nuestra metáfora del director de orquesta, de la misma forma en que la batuta del director marca el ritmo al que interpretan la composición musical los músicos, la señal de reloj generada por el oscilador electrónico marca el ritmo con el que trabajan los distintos elementos o unidades funcionales alojados en el interior del procesador. Y, lo que es igual de importante, les permite sincronizarse. En nuestro ejemplo el director de orquesta es el generador de la señal de reloj, la batuta es la señal de reloj, y los músicos son los elementos del procesador que trabajan al unísono y de forma coordinada para llevar a cabo las operaciones requeridas por el sistema operativo y los programas que ejecutamos en nuestro ordenador.

En el interior del generador de la señal de reloj hay un circuito electrónico que utiliza un pequeño cristal, generalmente de cuarzo, con una propiedad muy interesante: vibra cuando es expuesto a una corriente eléctrica. Pero lo más curioso es que lo hace con una frecuencia muy precisa, una propiedad esencial cuando lo que pretendemos es generar una señal eléctrica estable que marque el ritmo de trabajo de los circuitos integrados de nuestro ordenador en general, y del microprocesador en particular. La frecuencia de reloj, precisamente, nos indica el ritmo con el que el generador de la señal de reloj produce los pulsos eléctricos, y se mide en ciclos de reloj por segundo o hercios. Si, por ejemplo, el procesador de nuestro PC está trabajando en un instante determinado a una frecuencia de reloj de 2 GHz significa que su ritmo de trabajo está marcado por una señal de reloj descrita por 2 x 109 ciclos por segundo, o, lo que es lo mismo, dos mil millones de hercios.

Un último apunte interesante: no todos los circuitos integrados de nuestro PC trabajan a la misma velocidad. De hecho, el procesador suele ser el más rápido, por lo que para que pueda operar al ritmo de trabajo que es capaz de alcanzar es necesario multiplicar la señal generada por el reloj externo por un factor de multiplicación concreto. De esta forma la CPU puede trabajar a una frecuencia de reloj mayor que la del resto de circuitos integrados del ordenador. De llevar a cabo este incremento se responsabiliza un circuito electrónico conocido como multiplicador de la frecuencia de la señal de reloj.

Memoria caché
Es una memoria intermedia utilizada habitualmente en informática para hacer posible un acceso más rápido a los datos. Si nos ceñimos a los microprocesadores la caché es una memoria volátil más pequeña y más rápida que la memoria principal que permite a la CPU acceder a los datos o las instrucciones en menos tiempo del que requiere un acceso a la RAM. Los microprocesadores modernos para ordenadores de escritorio suelen incorporar tres memorias caché diferentes conocidas como cachés de nivel 1, 2 y 3, aunque hay modelos que incorporan un cuarto nivel adicional. La de nivel 1 es la más pequeña y rápida, está dividida en caché de datos y caché de instrucciones, y reside en el núcleo de la CPU, de manera que cada uno de los núcleos de un microprocesador posee su propia memoria caché de nivel 1.

La caché es una memoria intermedia utilizada habitualmente en informática para hacer posible un acceso más rápido a los datos
La caché de nivel 2 es más grande que la caché de nivel 1, pero también es más lenta. Y la caché de nivel 3 es más grande que la de nivel 2, pero es más lenta que esta última. A diferencia de las cachés de nivel 1 y 2, que residen dentro de los núcleos de la CPU, la caché de nivel 3 reside dentro del encapsulado del procesador, pero habitualmente fuera de los núcleos. Y esto tiene una consecuencia importante: es una memoria compartida a la que pueden acceder todos los núcleos de la CPU. Aunque los distintos subniveles de memoria caché tienen tamaños y rendimientos diferentes, todos ellos son más rápidos que la memoria principal, por lo que siempre que uno de los hilos de ejecución necesita un dato que se encuentra almacenado en la caché lo obtiene en menos tiempo del que debería invertir para recogerlo directamente desde la memoria principal.

En este artículo no necesitamos conocer con detalle cómo se administra el contenido de las memorias caché, pero es interesante que sepamos que todos los datos que contienen proceden de la memoria principal y se transfieren de un subnivel de caché a otro inferior. Esto significa que una porción de la memoria principal puede pasar a la caché de nivel 3. Al mismo tiempo, una porción de esta última puede pasar a la caché de nivel 2. Y, por último, una porción de esta puede pasar a la caché de nivel 1. Existen varias estrategias que nos permiten decidir qué datos deben o no transferirse a la memoria caché y cuándo nos interesa actualizar su contenido, pero el objetivo último es que los datos a los que se accede con más frecuencia residan en la caché de nivel 1 porque es la más rápida.

¿Qué sucede si un hilo de ejecución necesita un dato que no ha sido previamente almacenado en esta caché? En este caso se produce un fallo de caché que requerirá actualizar el contenido de uno o varios subniveles de manera que el dato finalmente esté disponible en la caché de nivel 1 del núcleo en el que se está ejecutando el hilo que ha reclamado el dato. Lo ideal es que se produzcan tan pocos fallos de caché como sea posible debido a que el proceso de actualización de uno o varios subniveles requiere un tiempo que no es despreciable, de ahí que sea importante afinar bien la estrategia de administración de su contenido.

Un último apunte: la memoria caché no sirve solo para llevar a cabo operaciones de lectura de la memoria principal. En ocasiones un dato de la caché puede ser modificado durante la ejecución de un thread, por lo que es necesario tener una política de escritura que se encargue de mantener la coherencia entre la caché y la memoria principal. Como podemos intuir, el tamaño de la caché, el número de niveles y las estrategias de actualización y escritura tienen un impacto muy importante en las prestaciones del procesador.

Bus
Es un canal de comunicación que permite la transferencia de información entre dos subsistemas de un ordenador, como, por ejemplo, la CPU y la memoria principal, o bien entre dos unidades funcionales de un mismo componente, como, por ejemplo, las cachés de nivel 1 y 2 del microprocesador. Hay dos tipos de buses: serie y paralelo. En los primeros los bits de información se transmiten uno detrás de otro, mientras que en los segundos se transmite simultáneamente un paquete de varios bits.

Un bus es un canal de comunicación que permite la transferencia de información entre dos subsistemas de un ordenador, o bien entre dos unidades funcionales de un mismo componente

Los ordenadores modernos utilizan ambos buses, aunque los de tipo serie se están imponiendo en los enlaces de alto rendimiento porque pueden trabajar a frecuencias de reloj más altas que los buses en paralelo. Y, además, un bus serie moderno puede enviar varios bits simultáneamente a través de varios canales. Los buses PCI Express que utilizan muchos de los componentes de nuestros ordenadores son buses serie de alto rendimiento que emplean varias líneas punto a punto. Alcanzan una velocidad de transferencia cercana a los 2.000 MB/s por línea en la revisión 4.0.

Zócalo
Este elemento es el soporte electromecánico que nos ayuda a fijar nuestro procesador a la placa base de una forma estable y segura. Su característica más llamativa es que nos permite instalar y extraer el procesador con libertad, aunque, eso sí, es aconsejable colocarlo y retirarlo con delicadeza para no dañarlo. La comunicación directa entre la CPU, la memoria principal, la lógica gráfica externa y el chipset se lleva a cabo a través de una matriz de contactos alojada en la base del zócalo.

La interfaz de conexión entre el procesador y el zócalo se puede implementar de varias formas, pero las más frecuentes son la matriz de rejilla de pines PGA (Pin Grid Array), que es la utilizada por los microprocesadores Ryzen con zócalo AM4, y la matriz de rejilla de contactos LGA (Land Grid Array), que es la que usan los procesadores de Intel de última generación y los Ryzen Threadripper de AMD. Una tercera opción que actualmente es menos frecuente en los PC de sobremesa que las dos anteriores es la matriz de rejilla de bolas BGA (Ball Grid Array).

TDP ('Thermal Design Power')
La potencia de diseño térmico es un parámetro muy importante de los microprocesadores porque refleja cuánta energía promedio disipan en forma de calor cuando todos los núcleos están activos y trabajan a la frecuencia de reloj base. Se mide en vatios. Nos interesa fijarnos en su valor cuando elegimos un sistema de refrigeración para nuestro procesador con el propósito de garantizar que va a ser capaz de mantener la CPU siempre por debajo de su umbral máximo de temperatura.

Esto es lo que nos prometen los últimos procesadores de Intel y AMD
Los parámetros en los que acabamos de indagar pueden resultarnos muy útiles para intuir qué potencia tiene un microprocesador, de manera que podamos elegir con garantías el modelo que tiene la relación rendimiento/coste que encaja mejor en nuestro presupuesto. Las frecuencias de reloj base y máxima a las que trabajan sus núcleos tienen un impacto muy importante en su productividad, pero no son en absoluto los únicos parámetros que condicionan su rendimiento. El trabajo que la CPU es capaz de llevar a cabo en cada uno de los ciclos de la señal de reloj también es decisivo, y, curiosamente, está descrito por un gran número de características de la microarquitectura.

El IPC (Instructions Per Cycle) refleja el número promedio de instrucciones que ejecuta el procesador en cada uno de los ciclos de la señal de reloj. Y es importantísimo. También tiene un impacto directo en el rendimiento la memoria caché, pero no solo son relevantes su tamaño y el número de niveles; importan, y mucho, las estrategias que utiliza tanto para actualizar el contenido de los subniveles de caché como para mantener la coherencia entre esta y la memoria principal. Pero aquí no acaba todo.

El rendimiento de la CPU también está condicionado por su número de núcleos, la implementación de la tecnología SMT y por otras características esenciales de la microarquitectura, como son el número de unidades de ejecución, la estrategia de los algoritmos de predicción de bifurcaciones o el diseño del cauce de ejecución (pipeline). No es necesario que conozcamos con detalle en qué consisten estos componentes, pero todo esto nos recuerda que el rendimiento de un procesador está condicionado por muchos parámetros, y no solo por la frecuencia de reloj a la que trabaja.


Las dos tablas que tenéis debajo de estas líneas resumen las características más relevantes de algunos de los microprocesadores más recientes de Intel y AMD. Hemos incluido un modelo de cada serie para que podamos identificar con claridad las principales diferencias que existen entre unas familias y otras, y también para que podamos intuir su impacto en el rendimiento. Ambas compañías tienen otras series de procesadores, como los Athlon y los Serie A de AMD, o los Pentium y los Celeron de Intel, pero, en nuestra opinión, las soluciones de las familias Ryzen y Core son, con mucha diferencia, las más atractivas por su relación coste/prestaciones. Y, además, algunos de estos procesadores, especialmente los Ryzen 3 y los Core i3, tienen un precio muy comedido que los coloca al alcance de un abanico muy amplio de usuarios.

La siguiente tabla resume las diferencias más relevantes entre los microprocesadores Ryzen 3, 5, 7, 9 y Threadripper de AMD. Todos ellos implementan la microarquitectura Zen 2 y han sido fabricados utilizando fotolitografía FinFET de 7 nm, pero, como podéis ver, difieren con claridad por su número de núcleos e hilos de ejecución, y también por el tamaño de su memoria caché, entre otras características.

AMD RYZEN 3 3300X RYZEN 5 3600X RYZEN 7 3800X RYZEN 9 3950X RYZEN THREADRIPPER 3990X
FOTOLITOGRAFÍA TSMC 7 nm FinFET TSMC 7 nm FinFET TSMC 7 nm FinFET TSMC 7 nm FinFET TSMC 7 nm FinFET
MICROARQUITECTURA Zen 2 Zen 2 Zen 2 Zen 2 Zen 2
ZÓCALO AM4 AM4 AM4 AM4 sTRX4
NÚCLEOS 4 6 8 16 64
HILOS DE EJECUCIÓN 8 12 16 32 128
FRECUENCIA BASE 3,8 GHz 3,8 GHz 3,9 GHz 3,5 GHz 2,9 GHz
FRECUENCIA MÁXIMA 4,3 GHz 4,4 GHz 4,5 GHz 4,7 GHz 4,3 GHz
CACHÉ L2 2 MB 3 MB 4 MB 8 MB 32 MB
CACHÉ L3 16 MB 32 MB 32 MB 64 MB 256 MB
BUS PCI Express 4.0 PCI Express 4.0 PCI Express 4.0 PCI Express 4.0 PCI Express 4.0
TDP 65 vatios 95 vatios 105 vatios 105 vatios 280 vatios
PRECIO 120 dólares (110 euros aprox.) 249 dólares (229 euros aprox.) 399 dólares (367 euros aprox.) 749 dólares (690 euros aprox.) 3.990 dólares (3.677 euros aprox.)
Todos sabemos que la elección de un microprocesador u otro está condicionada por el escenario de uso en el que vamos a exprimir nuestro PC y por nuestro presupuesto, pero, afortunadamente, no es necesario invertir mucho dinero para hacernos con una CPU con unas prestaciones estupendas. En la práctica esto significa que un Ryzen 3, como, por ejemplo, el 3300X que hemos descrito en la tabla, puede ofrecernos una experiencia fantástica en un PC para ofimática, reproducción de contenidos y navegación en Internet. Pero esto no significa que con esta CPU no podamos jugar y crear contenidos. Si el resto de los componentes acompañan, especialmente la memoria principal y la tarjeta gráfica, con un microprocesador como este también podremos jugar, editar vídeo y retocar fotografías, entre otras tareas, sin mayor problema.

El Ryzen 3 3300X llegará a las tiendas durante las próximas semanas a un precio que no debería ser muy superior a los 110 euros, pero AMD también tiene otros Ryzen 3 de 3ª generación con y sin gráficos integrados más baratos que el 3300X. Una vez que hemos llegado a este punto resulta razonable plantearse cuándo merece la pena comprar un Ryzen 5, 7, 9 o Threadripper. La principal diferencia entre estos microprocesadores reside en el número de núcleos e hilos de ejecución y en el tamaño de la memoria caché, pero no tanto en su frecuencia de reloj, que apenas difiere. Los juegos se benefician más de la frecuencia de reloj que del número de núcleos, de ahí que un Ryzen 3 o 5 pueda ofrecernos una experiencia muy satisfactoria en este escenario de uso.

Los juegos se benefician más de la frecuencia de reloj que del número de núcleos, de ahí que un Ryzen 3 o 5 pueda ofrecernos una experiencia muy satisfactoria en este escenario de uso

A los jugadores avanzados que deciden comprar una tarjeta gráfica de gama alta, como, por ejemplo, una con GPU GeForce RTX 2070 de NVIDIA o Radeon RX 5700 XT de AMD, para disfrutar los títulos de última hornada con resoluciones superiores a 1080p y con la calidad gráfica más alta podría encajarles hacerse con un Ryzen 7. Pero esta decisión posiblemente iría encaminada más a mantener el equilibrio del PC en otros escenarios de uso que a incrementar su rendimiento con los juegos. Y es que los 8 núcleos y 16 hilos de ejecución del Ryzen 7 3800X que hemos incluido en la tabla permiten a esta CPU, y a otras similares, enfrentarse con mucha solvencia a un escenario de creación de contenidos exigente. Y, por supuesto, con la ofimática y los juegos irá sobrado.

Los microprocesadores Ryzen 9 y Threadripper se desmarcan de los que hemos repasado hasta ahora por su mayor número de núcleos y su capacidad de procesar simultáneamente más hilos de ejecución, pero su precio es sensiblemente mayor que el de los Ryzen 3, 5 y 7, sobre todo si ponemos nuestros ojos en los Ryzen Threadripper de 3ª generación. Si su precio encaja en nuestro presupuesto, los demás componentes del PC están a su altura y necesitamos utilizarlo con frecuencia en un escenario de creación de contenidos muy exigente, su compra tiene sentido. A un usuario que emplea su ordenador habitualmente para renderizar gráficos complejos en 3D, trabaja con animaciones y edita vídeo a 4K puede interesarle apostar por un Ryzen 9 o un Threadripper, pero fuera de este escenario de uso difícilmente conseguiremos aprovechar todo el potencial de estos procesadores.

Ahora le toca a Intel. La siguiente tabla resume las diferencias más relevantes entre varios microprocesadores Intel Core i3, i5, i7 e i9 de última generación. Los nuevos chips Intel Core de 10ª generación para equipos de sobremesa llegarán a las tiendas a lo largo de este mes de mayo (algo que se rumoreaba desde hace varias semanas), por lo que la competencia con los Ryzen 3000 de AMD se recrudecerá. Sin duda, es una gran noticia para los usuarios porque es evidente que lo que nos interesa es que tanto Intel como AMD sean capaces de colocar en la calle soluciones lo más atractivas y competitivas posible.

Sobre el papel, los nuevos procesadores Intel Core de 10ª generación representan un salto hacia delante interesante frente a la anterior generación de chips para equipos de sobremesa de esta marca (esperamos poder probarlos pronto y confirmaros si es así o no). La tecnología Hyper-Threading, que es como Intel llama a su implementación de la tecnología SMT, está ahora presente en más procesadores. Además, estos chips introducen un incremento palpable de la frecuencia de reloj máxima, una mejora que debería tener un impacto tangible en un abanico amplio de aplicaciones. Y, sobre todo, en los juegos.

INTEL CORE I3-10320 CORE I5-10600K CORE I7-10700K CORE I9-10900K CORE I9-10980XE
FOTOLITOGRAFÍA 14 nm 14 nm 14 nm 14 nm 14 nm
MICROARQUITECTURA Comet Lake-S Comet Lake-S Comet Lake-S Comet Lake-S Cascade Lake-X
ZÓCALO LGA1200 LGA1200 LGA1200 LGA1200 LGA2066
NÚCLEOS 4 6 8 10 18
HILOS DE EJECUCIÓN 8 12 16 20 36
FRECUENCIA BASE 3,8 GHz 4,1 GHz 3,8 GHz 3,7 GHz 3 GHz
FRECUENCIA MÁXIMA 4,6 GHz 4,8 GHz 5,1 GHz 5,3 GHz 4,60 GHz
INTEL SMART CACHE 8 MB 12 MB 16 MB 20 MB 24,75 MB
BUS PCI Express 3.0 PCI Express 3.0 PCI Express 3.0 PCI Express 3.0 PCI Express 3.0
TDP 65 vatios 125 vatios 125 vatios 125 vatios 165 vatios
PRECIO 154 dólares (141 euros aprox.) 262 dólares (241 euros aprox.) 374 dólares (344 euros aprox.) 488 dólares (448 euros aprox.) 979 dólares (901 euros aprox.)
Buena parte de las conclusiones a las que hemos llegado durante el repaso de los microprocesadores de AMD se pueden extrapolar al porfolio actual de Intel. No obstante, sobre el papel algunos de los chips de AMD nos proponen una relación rendimiento/vatio superior a la de los procesadores equiparables de Intel debido a las ventajas que acarrea la fotolitografía de 7 nm utilizada por TSMC para fabricar los últimos procesadores Ryzen. Además, los nuevos chips de Intel mantienen su apuesta por la interfaz PCI Express 3.0, mientras que sus competidores de AMD incorporan PCI Express 4.0. Eso sí, las frecuencias de reloj máximas más altas las han conquistado los nuevos procesadores de Intel, con el modelo Core i9-10900K a la cabeza. Si queréis conocerlos con todo detalle podéis consultar el artículo que les hemos dedicado.

AMD tiene dos bazas claras frente a los nuevos Intel Core de 10ª generación: su litografía de 7 nm y la interfaz PCI Express 4.0
Al igual que los Ryzen 3 de AMD, los chips Core i3 de Intel encajan a la perfección en un PC para ofimática, reproducción de contenidos y navegación en Internet. La alta frecuencia de reloj a la que trabaja un procesador como el Core i3-10320 que hemos incluido en la tabla también le permite rendir bien con los juegos, especialmente si trabaja en tándem con una buena tarjeta gráfica. Pero si nuestra intención es usar el ordenador para crear contenidos es probable que nos interese apostar por una CPU con una mayor cantidad de núcleos y la capacidad de administrar simultáneamente una mayor cantidad de hilos de ejecución.

Intel10gen
En función del peso que la creación de contenidos tenga en nuestros hábitos de uso, y también de la complejidad de las tareas que queremos llevar a cabo con nuestro PC, nos interesará decantarnos por un procesador Core i5, i7 o i9. Un Core i5 con 6 núcleos como el 10600K que hemos descrito en la tabla nos ofrecerá una experiencia estupenda con ofimática, un rendimiento a la altura con los juegos (si le acompaña una tarjeta gráfica competente) y una productividad interesante en las herramientas de creación de contenidos si nuestras necesidades no son excesivas. Con un procesador como este podríamos poner a punto un PC equilibrado y con un precio moderado, aunque, como hemos visto, en este segmento los Ryzen 3 y 5 de AMD son unos rivales difíciles de batir.

Si necesitamos ejecutar habitualmente en nuestro PC herramientas de creación de contenidos, nuestras exigencias son importantes y nos hemos decidido por un procesador de Intel nos interesará valorar la posibilidad de hacernos con un Core i7 o i9. El Core i9-10980XE que hemos descrito en la tabla incorpora 18 núcleos y 36 hilos de ejecución, por lo que es una alternativa muy sólida al Ryzen 9 3950X de AMD, que tiene 16 núcleos y 32 threads, en los escenarios de creación de contenidos más exigentes, como son el renderizado de escenas tridimensionales o la edición de vídeo 4K.

El otro lado de la moneda, el menos amable, es que el precio de estos procesadores es muy alto. Además, es importante que tengamos en cuenta que un PC debe ser lo más equilibrado posible, por lo que si compramos un Ryzen 9 o un Core i9 y queremos sacarle el máximo partido lo ideal es que los demás componentes estén a su altura, especialmente la memoria principal, la tarjeta gráfica y el almacenamiento secundario.

La refrigeración por aire: cómo elegir el ventilador idóneo
Refrigerar bien el microprocesador de nuestro PC es esencial. Un sistema de refrigeración de calidad capaz de garantizarnos que nuestra CPU no superará su umbral máximo de temperatura ni siquiera en escenarios de máximo estrés no solo incrementará la estabilidad del equipo; también contribuirá a dilatar la vida útil del procesador. Las dos características de nuestra CPU que nos interesa conocer a la hora de elegir el ventilador con el que trabajará codo con codo son el zócalo que utiliza y su TDP.

Las dimensiones y el sistema de sujeción del ventilador solo permiten utilizarlo con un determinado tipo de zócalos. Y, por otro lado, el caudal de aire que consigue desplazar le permite refrigerar con eficacia procesadores que disipan una cantidad máxima de energía en forma de calor. Como acabamos de ver, es muy importante que prestemos atención a estas características de nuestro procesador para elegir el ventilador adecuado, pero hay otros parámetros de este último que también nos interesa conocer y que pueden resultarnos de gran ayuda para decantarnos por una solución de refrigeración determinada entre todas las que son compatibles con nuestra CPU.

Un sistema de refrigeración de calidad debe ser capaz de garantizarnos que nuestra CPU no superará su umbral máximo de temperatura ni siquiera en escenarios de máximo estrés

Antes de que indaguemos en estos parámetros es interesante que nos familiaricemos brevemente con las tres formas de transferencia de energía que se dan en la naturaleza: la convección, la conducción y la radiación. Las dos primeras son las que nos interesan en este artículo porque son las formas de transferencia de calor que utilizaremos para refrigerar nuestra CPU. No obstante, si tenéis curiosidad y os apetece conocer con un poco de profundidad qué es la radiación, cómo funciona y qué impacto tiene en nuestra salud os sugiero que echéis un vistazo al artículo que enlazo aquí mismo. Vamos ahora con la convección y la conducción.

El primero de estos mecanismos de transferencia de energía en forma de calor, la convección, lleva a cabo el transporte de la energía gracias al movimiento de las moléculas que conforman un fluido. Cuando hablamos de fluidos pensamos intuitivamente en los líquidos, pero es importante que tengamos en cuenta que el comportamiento de los gases está descrito por los mismos principios físicos que enuncian las propiedades de los líquidos, por lo que cuando hablamos de fluidos en este contexto debemos pensar tanto en los líquidos como en los gases. La convección explica, por ejemplo, cómo se transfiere el calor cuando hervimos agua en un recipiente y por qué se originan corrientes dentro del fluido.


A diferencia de la convección, el mecanismo de conducción explica cómo se lleva a cabo la transferencia del calor entre aquellos cuerpos sólidos con diferente temperatura en los que sus moléculas no pueden moverse con la libertad con la que lo hacen en los fluidos. Aun así, la adquisición de esa energía térmica provoca que las moléculas de la zona de contacto incrementen su vibración, chocando de esta forma con las moléculas adyacentes y transfiriéndoles una parte de su energía. Este es, de una forma sencilla, el mecanismo que explica cómo se transfiere la energía térmica mediante conducción.

Al igual que sucede en el mecanismo de convección, los cuerpos involucrados en este proceso deben estar en contacto, de manera que la transferencia de energía térmica entre uno y otro provocará que en un plazo de tiempo determinado la temperatura de ambos se iguale. Lo interesante es que no todos los materiales tienen la misma habilidad a la hora de transportar energía en forma de calor, lo que nos lleva a la siguiente sección de este artículo.

El material del disipador condiciona su coeficiente de conductividad térmica
El índice de termoconductividad de un material también se conoce como coeficiente de conductividad térmica, y mide la capacidad de transportar energía en forma de calor que tiene un material determinado. Cuanto más alto sea este índice mayor capacidad de transporte de calor tendrá un material. Los metales suelen tener un índice relativamente alto, aunque hay una diferencia notable entre unos y otros, mientras que otros materiales, como el corcho o la madera, transportan el calor con mucha menos eficacia.

El aluminio y el cobre tienen un coeficiente de conductividad térmica alto. Por eso se utilizan en la fabricación de disipadores
Este parámetro se representa con el símbolo ‘λ‘. El aluminio tiene un coeficiente mucho más alto (λ = 237) que otros materiales no metálicos, como los termoplásticos, que en el mejor de los casos alcanzan un valor λ = 20 si se combinan con aditivos como el grafito o el nitrato de boro; la madera (λ = 0,13) o el corcho (λ = 0,03-0,04). Esto le permite evacuar con mucha más eficacia la energía disipada en forma de calor por los componentes que más consumen, como la CPU o la GPU. Sin embargo, hay metales que tienen un índice de termoconductividad aún más alto que el aluminio, como, por ejemplo, el cobre (λ = 372,1-385,2).

El aluminio y el cobre son, precisamente, los materiales utilizados con más frecuencia en la fabricación de los disipadores para CPU. Y lo son gracias a su elevado coeficiente de conductividad térmica. Hay disipadores que solo utilizan aluminio, otros que solo recurren al cobre (aunque no abundan porque son muy caros), y algunos combinan ambos elementos de una forma ingeniosa. Estos últimos son los más atractivos porque tienen una capacidad de transporte de calor muy notable y su precio no suele ser exagerado. Habitualmente utilizan cobre en la base del disipador y los conductos de calor (heatpipes), y aluminio en las aletas de refrigeración.

Si os decantáis por un procesador con un TDP moderado que no supera los 70 u 80 vatios un buen ventilador con disipador de aluminio puede ofreceros la capacidad refrigerante que necesitáis. Pero si os hacéis con una CPU con un TDP más exigente puede ser una buena idea apostar por un ventilador de buena calidad que incorpore un disipador de los que combinan aluminio y cobre. Son más caros que los que solo usan aluminio, como es lógico, pero su capacidad refrigerante es mayor. De hecho, pueden ser tan eficientes que AMD recomienda algunos modelos con estas características, como el estupendo NH-U9 TR4-SP3 de Noctua, para refrigerar sus procesadores Ryzen Threadripper, que tienen un TDP de hasta 280 vatios.

Las características del ventilador condicionan su eficiencia y el ruido que emite
Además del disipador, el otro ingrediente esencial de un sistema de refrigeración por aire para microprocesadores es el ventilador. Uno bien diseñado y equipado con rodamientos de buena calidad puede proporcionarnos muchos años de uso frecuente libres de problemas y con un mantenimiento mínimo. El rol de los rodamientos es minimizar tanto como sea posible el rozamiento, y por tanto también el desgaste, que se produce entre el rotor al que están ancladas las palas del ventilador y el eje en torno al que gira.

Un ventilador de buena calidad debe proporcionarnos muchos años de uso frecuente libres de problemas y con un mantenimiento mínimo
La vida útil del ventilador, la velocidad máxima a la que puede girar y su nivel de emisión de ruido están en gran medida condicionados por el tipo de rodamientos que incorpora. Los que nos ofrecen la vida útil más prolongada y el nivel de ruido más bajo son los modelos hidrodinámicos de aceite presurizado y los de levitación magnética, pero también son sensiblemente más caros que los modelos con rodamientos de bolas, de casquillo o de tipo rifle. Aun así, la inversión suele merecer la pena, sobre todo cuando aspiramos a que nuestro PC sea lo más silencioso posible.

Dos características más de los ventiladores a las que también nos interesa prestar atención son el diseño de sus palas y la velocidad a la que giran. La capacidad refrigerante de un ventilador está condicionada por el caudal de aire que es capaz de desplazar sobre el disipador y la velocidad que adquieren sus moléculas. Debido al efecto de convección del que hemos hablado unos párrafos más arriba cuantas más moléculas de aire desplace y a mayor velocidad más eficiente será el proceso de transferencia de energía en forma de calor desde el disipador al aire.

Por esta razón, un ventilador con palas voluminosas y una velocidad de giro elevada tendrá una mayor capacidad refrigerante que otro con el mismo volumen y una velocidad de giro inferior. Y, por supuesto, también que otro más pequeño y con un giro más lento. El problema es que habitualmente cuando incrementamos la velocidad de giro del rotor también se incrementa el ruido que emite, a menos que no se produzca rozamiento entre este y el eje sobre el que gira, como en los modelos hidrodinámicos de aceite presurizado y de levitación magnética. En definitiva, la eficiencia de un ventilador y el nivel de ruido que emite pueden balancearse actuando sobre sus rodamientos, su diseño, el tamaño de las palas y su velocidad de giro.

El rozamiento que no podemos evitar es el que se produce entre las palas y el aire, por lo que todos los ventiladores, por muy sofisticados que sean, emiten ruido. Afortunadamente, los fabricantes de sistemas de refrigeración por aire de calidad siempre publican la velocidad máxima de rotación de sus ventiladores, el caudal de aire máximo que son capaces de desplazar y el nivel de ruido máximo que emiten. Si una marca no refleja estos datos en las especificaciones de sus productos, desconfiad. Y a la hora de elegir un modelo para refrigerar vuestro procesador os sugerimos que, una vez que tengáis un listado con varios candidatos compatibles de acuerdo al TDP y el zócalo, comparéis los parámetros que acabamos de revisar.

Un último apunte: es crucial que una vez que hayamos elegido el ventilador de nuestra CPU nos cercioremos de que podemos instalarlo en el interior de la caja de nuestro PC. Algunos modelos son tan voluminosos que podríamos tener problemas debido a su altura. Incluso podrían chocar con otros componentes del ordenador, por lo que es importante que prestemos atención a sus medidas.

La refrigeración líquida: cómo funciona y cuándo merece la pena apostar por ella
Como acabamos de ver, la estructura de un sistema de refrigeración por aire es relativamente sencilla. Y es que solo incorporan dos elementos: un disipador, habitualmente de aluminio o cobre, y un ventilador. El calor disipado por el procesador es transferido mediante conducción por el disipador metálico de la CPU al disipador del sistema de refrigeración. Al mismo tiempo el ventilador «sopla» sobre este último, incentivando el transporte de energía térmica desde el disipador del sistema de refrigeración al aire mediante convección.

A medida que el ventilador va transportando la energía térmica disipada por la CPU la temperatura del aire en el interior de la caja del ordenador se va incrementando, por lo que es esencial que unos ventiladores adicionales instalados en el interior del chasis se responsabilicen de renovarlo. Para lograrlo estos ventiladores propician el intercambio del aire caliente del interior de la caja y el aire a temperatura ambiente procedente del exterior mediante un flujo constante. La simplicidad conceptual de los sistemas de refrigeración por aire es evidente, pero esto no significa que no lleven a cabo su objetivo con eficacia.

Los sistemas de refrigeración líquida, sin embargo, son mucho más complejos. Todos ellos recurren a un circuito que favorece el intercambio de calor mediante convección entre el disipador de la CPU y un líquido refrigerante, en vez de propiciar el intercambio entre el disipador y el aire, como hacen los ventiladores tradicionales. Aquí tenemos la primera ventaja de la refrigeración líquida: nos ayuda a controlar mejor la temperatura en el interior de la caja del ordenador. Esto es posible debido a que el líquido refrigerante transporta el calor por el interior del chasis gracias a unos tubos de plástico y unos manguitos que previenen su contacto directo con el aire.

La eficacia refrigerante de un sistema de refrigeración líquida de buena calidad puede ser muy alta, pero un sistema de refrigeración por aire bien diseñado también puede ofrecernos un resultado fantástico

La eficacia refrigerante de un sistema de refrigeración líquida de buena calidad puede ser muy alta, pero un sistema de refrigeración por aire bien diseñado también puede ofrecernos un resultado fantástico. En ese caso, ¿en qué condiciones merece la pena apostar por uno u otro? Los dos factores que nos interesa sopesar para tomar una decisión son las condiciones de trabajo de la CPU y la temperatura ambiental. En un escenario de uso convencional en el que ejecutamos aplicaciones ofimáticas, de creación de contenidos y videojuegos durante periodos de tiempo que no son excesivamente prolongados un buen ventilador debería permitir al microprocesador trabajar permanentemente dentro de su rango óptimo de temperatura.

Sin embargo, si nos gusta practicar overclocking extremo es posible que nos interese recurrir a la refrigeración líquida. Esta práctica consiste en manipular los parámetros de funcionamiento de la CPU con el propósito de conseguir que trabaje a una frecuencia de reloj superior a su frecuencia máxima nominal. Su rendimiento en estas condiciones se incrementa, pero para mantener la estabilidad del sistema y evitar que se produzcan cuelgues y reinicios inesperados suele ser necesario actuar sobre el voltaje. Y en estas condiciones la CPU se calienta más, y, en consecuencia, disipa más calor. Si el overclocking no es extremo un sistema de refrigeración por aire de calidad puede ofrecernos un buen resultado, pero si es agresivo es probable que tengamos que recurrir a la refrigeración líquida.

Una baza de la refrigeración líquida es su capacidad de ayudarnos a reducir el ruido emitido por nuestro ordenador
La práctica del overclocking no es el único contexto en el que puede ser interesante apostar por la refrigeración líquida. Si sometemos nuestro ordenador a esfuerzos muy intensos durante periodos de tiempo muy prolongados puede ser recomendable recurrir a esta modalidad de refrigeración. Un escenario de uso que ilustra bastante bien este contexto es, por ejemplo, el renderizado de modelos tridimensionales. Si utilizamos nuestro PC para crear y renderizar durante horas modelos en 3D podría ser una buena idea apostar por la refrigeración líquida para conseguir mantener la temperatura de la CPU en todo momento bajo control. No obstante, cualquier otra tarea que imponga una carga de trabajo muy alta al procesador durante un periodo de tiempo muy prolongado puede beneficiarse de la refrigeración líquida.

La temperatura ambiental es un factor que nos interesa tener en cuenta porque también influye decisivamente en las condiciones de trabajo de un ordenador. Como podemos intuir no es lo mismo trabajar en una habitación refrigerada a una temperatura ambiental de 21 grados que hacerlo en un entorno sin refrigeración con una temperatura ambiental constante por encima de los 30 grados. Estas últimas condiciones pueden darse con relativa facilidad en determinadas zonas durante los meses de verano. Cuando un ordenador se ve sometido simultáneamente a un esfuerzo muy intenso y una temperatura ambiental muy alta es necesario apostar por un sistema de refrigeración muy eficiente. Y en estas condiciones tiene sentido recurrir a la refrigeración líquida.

Una ventaja adicional de esta modalidad de refrigeración que también puede provocar que algunos usuarios se fijen en ella es su capacidad de ayudarnos a reducir el ruido emitido por nuestro ordenador. El ventilador que se encarga de refrigerar la CPU en los sistemas por aire suele ser el responsable de buena parte del ruido emitido por nuestro PC. En el mercado podemos encontrar ventiladores para CPU muy silenciosos, pero los sistemas de refrigeración líquida tienen la ventaja de que no necesitan un ventilador para la CPU. Eso sí, mantienen los ventiladores responsables de actuar sobre el radiador.

Hasta ahora hemos repasado las cualidades de los sistemas de refrigeración líquida que pueden provocar que nos fijemos en ellos, pero también tienen desventajas si los comparamos con los sistemas de refrigeración mediante aire que nos conviene considerar. La más evidente es que son mucho más complejos y requieren una instalación muy meticulosa si queremos prevenir posibles fugas del líquido refrigerante que podrían dañar los delicados componentes electrónicos de nuestro ordenador. Además, requieren un mantenimiento más esmerado.


En un sistema de refrigeración por aire solo tenemos que preocuparnos de retirar periódicamente el polvo que puede acumularse en las palas y el eje del ventilador utilizando, por ejemplo, un espray limpiador de aire a presión. Pero un sistema de refrigeración líquida requerirá al menos que revisemos con cierta frecuencia el estado de la bomba, la ausencia de fugas, y también que renovemos periódicamente el líquido refrigerante, además de retirar el polvo acumulado sobre los ventiladores que actúan sobre el radiador.

Por otro lado, el elevado número de elementos que requiere la refrigeración líquida nos exige una caja lo suficientemente amplia para acomodar en su interior todos los componentes que es necesario instalar. Y, por último, también es importante que tengamos en cuenta que un sistema de refrigeración líquida de calidad es sensiblemente más caro que un sistema de refrigeración por aire de calidad equiparable. Durante los últimos años su precio se ha reducido mucho, y actualmente podemos encontrar soluciones de refrigeración líquida muy decentes en el rango de precios que va desde los 60 a los 100 euros, pero si queremos un sistema de refrigeración líquida avanzado tendremos que gastarnos mucho más dinero. Y es que algunos, los más ambiciosos, pueden superar los 500 euros.

Responder Citando
  #3  
Antiguo 13-May-2020, 21:36
Avatar de mago
mago mago está desconectado
Ayuda
 
Fecha de Ingreso: 16-April-2020
Mensajes: 152
Gracias: 0
Agradeció 0 veces en 0 publicaciones
Predeterminado

interesante,pero prefiero pagar a tener que montar uno jajajaja

Responder Citando
  #4  
Antiguo 13-May-2020, 21:59
Avatar de winche
winche winche está desconectado
 
Fecha de Ingreso: 12-August-2019
Mensajes: 7,184
Gracias: 0
Agradeció 7 veces en 6 publicaciones
Predeterminado

Cita:
Iniciado por mago Ver Mensaje
interesante,pero prefiero pagar a tener que montar uno jajajaja
Pues si yo también pero ya sabes hay de todo en villa del señor

Responder Citando
  #5  
Antiguo 17-May-2020, 14:38
Avatar de javi44
javi44 javi44 está desconectado
Colaborador
 
Fecha de Ingreso: 19-March-2020
Ubicación: Caceres
Mensajes: 596
Gracias: 2
Agradeció 0 veces en 0 publicaciones
Predeterminado

gracias winche

Responder Citando
  #6  
Antiguo 18-May-2020, 13:55
Avatar de winche
winche winche está desconectado
 
Fecha de Ingreso: 12-August-2019
Mensajes: 7,184
Gracias: 0
Agradeció 7 veces en 6 publicaciones
Moil 3 La memoria principal

La memoria principal

La memoria principal tiene un impacto enorme en el rendimiento de nuestro PC. No importa solo la cantidad de RAM que hemos instalado; también son cruciales el tipo de módulos por el que nos hemos decantado y su latencia. Incluso su diseño térmico puede marcar la diferencia si su frecuencia de reloj es alta. O si tenemos la intención de practicar overclocking. Todo esto explica por qué merece la pena que nos cercioremos de que elegimos los módulos de memoria que mejor van a complementar a los demás componentes de nuestro ordenador.

Este artículo es la tercera entrega de una guía extensa en la que los principales componentes y los periféricos más relevantes de un PC tendrán su dosis de protagonismo. Nuestra intención es ayudar a los usuarios que han decidido montar un equipo a la medida a encontrar los componentes que resuelven mejor sus necesidades y encajan mejor en su presupuesto, y para lograrlo dedicaremos a la mayor parte de ellos un artículo en exclusiva. La protagonista indiscutible de este artículo es la memoria principal de la misma forma en que las dos primeras entregas de la guía las hemos dedicado a la placa base y el procesador.
DDR4 SDRAM: cómo funciona, qué tipos hay y cómo entender la nomenclatura de los módulos
La memoria DDR4 que estamos instalando actualmente en nuestros ordenadores es un tipo de SDRAM (Synchronous Dynamic Random-Access Memory) que utiliza una interfaz diseñada para trabajar a altas frecuencias de reloj. Su desembarco en el mercado se produjo en 2014, y llegó con tres promesas contundentes bajo el brazo: módulos con una mayor densidad, un voltaje inferior y unas frecuencias de reloj más altas. En estos tres frentes la memoria DDR4 aventaja con claridad a DDR3, su predecesora.

Los módulos DDR4 pueden tener una capacidad máxima de 64 GB, una cifra muy superior a los 16 GB máximos de los módulos de memoria DDR3. Además, su voltaje de referencia es 1,2 voltios frente a los 1,5 voltios de DDR3. Y su frecuencia de reloj oscila entre 800 y 1.600 MHz, un rango de velocidades claramente más ambicioso que el que maneja el estándar DDR3, que oscila entre 400 y 1.067 MHz. El voltaje y la frecuencia de reloj con los que trabajan los chips de memoria están íntimamente ligados, de manera que el paso de los 1,5 voltios de DDR3 a los 1,2 voltios de DDR4 ha permitido a este último tipo de memoria alcanzar frecuencias de reloj superiores sin que su consumo y la energía que disipa en forma de calor se disparen.

Las memorias DDR son capaces de llevar a cabo dos operaciones en cada ciclo de la señal de reloj debido a que se activan durante los flancos de subida y bajada de la señal

Una de las características más interesantes de las memorias DDR (Double Data Rate), y es una propiedad que comparten las cuatro generaciones de SDRAM DDR que han llegado a nuestros ordenadores hasta ahora, es que son capaces de llevar a cabo dos operaciones en cada ciclo de la señal de reloj (se activan durante los flancos de subida y bajada de la señal). Esto explica por qué en la práctica el rango de frecuencias de reloj que manejan las memorias DDR4, que, como hemos visto, oscila entre 800 y 1.600 MHz, equivale a una frecuencia efectiva que se mueve en el rango que va desde los 1.600 a los 3.200 MHz. De hecho, los fabricantes de módulos de memoria suelen indicar en las especificaciones la frecuencia efectiva, que siempre es más impactante que la que dicta el reloj externo porque la duplica.

A lo largo de este artículo vamos a hablar continuamente de la frecuencia y los ciclos de reloj, especialmente en la siguiente sección, en la que indagaremos en la latencia, por lo que merece la pena que expliquemos ambos conceptos. La frecuencia de reloj identifica el ritmo de trabajo de un circuito integrado, como un procesador o un chip de memoria. De igual forma que un director de orquesta, entre otras cosas, marca el ritmo al que deben tocar sus instrumentos los músicos, los circuitos integrados de nuestros ordenadores trabajan al ritmo que impone el generador de la señal de reloj. Este dispositivo es un pequeño oscilador electrónico diseñado para generar una señal eléctrica que adquiere la forma de pulsos emitidos en intervalos constantes conocidos como ciclos.

Siguiendo con nuestra metáfora del director de orquesta, de la misma forma en que la batuta del director marca el ritmo al que interpretan la composición musical los músicos, la señal de reloj generada por el oscilador electrónico marca el ritmo con el que trabajan los circuitos integrados de nuestros ordenadores. Y, lo que es igual de importante, les permite sincronizarse. En nuestro ejemplo el director de orquesta es el generador de la señal de reloj, la batuta es la señal de reloj, y los músicos son los chips de memoria que trabajan al unísono y de forma coordinada.

En el interior del generador de la señal de reloj hay un cristal de cuarzo que vibra cuando es expuesto a una corriente eléctrica
En el interior del generador de la señal de reloj hay un circuito electrónico que utiliza un pequeño cristal, generalmente de cuarzo, con una propiedad muy interesante: vibra cuando es expuesto a una corriente eléctrica. Pero lo más curioso es que lo hace con una frecuencia muy precisa, una propiedad esencial cuando lo que pretendemos es generar una señal eléctrica estable que marque el ritmo de trabajo de los circuitos integrados de nuestro ordenador. La frecuencia de reloj, precisamente, nos indica el ritmo con el que el generador de la señal de reloj produce los pulsos eléctricos, y se mide en ciclos de reloj por segundo o hercios. Si, por ejemplo, la memoria DDR4 de nuestro PC está trabajando en un instante determinado a una frecuencia de reloj de 1,6 GHz significa que su ritmo de trabajo está marcado por una señal de reloj descrita por 1,6 x 109 ciclos por segundo, o, lo que es lo mismo, mil seiscientos millones de hercios.

Una tecnología vinculada a las memorias DDR que contribuye en gran medida al alto rendimiento de la RAM de nuestros ordenadores es el acceso simultáneo a varios módulos de memoria. Los controladores diseñados para trabajar con los chips DDR pueden acceder a la vez a dos, tres o cuatro módulos de memoria, lo que tiene un impacto enorme y muy beneficioso en el rendimiento. Eso sí, para que esto sea posible los módulos de memoria deben ser idénticos, y esto significa que no solo tienen que tener la misma capacidad; también deben tener la misma latencia y tienen que trabajar a la misma frecuencia de reloj. Los microprocesadores de las familias Ryzen 3000 de AMD e Intel Core de 10ª generación implementan el acceso a la memoria principal en doble canal, por lo que pueden acceder a dos módulos a la vez. Sin embargo, los Ryzen Threadripper de AMD y los Intel Core serie X son más ambiciosos debido a que pueden utilizar hasta cuatro canales de memoria simultáneamente.

El formato físico que han adoptado los módulos de memoria a medida que fueron haciéndose con el mercado los procesadores Pentium de Intel se conoce como DIMM (Dual In-line Module Memory), y se caracteriza por tener chips de memoria en ambos lados de la placa de circuito impreso. Para que los circuitos integrados de las dos caras de la placa puedan comunicarse con la CPU bajo la batuta del controlador de memoria es necesario que incorporen contactos eléctricos, o pines, también en los dos lados del módulo. Las memorias DDR4 utilizan 288 contactos, a diferencia de los 240 pines de los módulos DDR3, aunque, curiosamente, la longitud de la placa de circuito impreso de ambos tipos de memoria es la misma.



Los entusiastas que se sienten cómodos con el hardware no suelen dejarse intimidar por la nomenclatura utilizada por los fabricantes de módulos de memoria para describir las características de sus soluciones, pero es comprensible que para buena parte de los usuarios estos datos no sean triviales. La tabla que tenéis debajo de estas líneas refleja las características de los estándares DDR4 aprobados por JEDEC (Joint Electron Device Engineering Council), que es la organización que se responsabiliza de definir los estándares utilizados por las tecnologías que recurren a los semiconductores.

Los módulos de memoria DDR4 se identifican de dos formas diferentes. La nomenclatura ‘DDR4-XXXX’ nos indica su capacidad de transferencia de datos medida en millones de transferencias por segundo (MT/s). Como ejemplo, un módulo DDR4-3200 puede llevar a cabo 3.200 millones de transferencias por segundo. La segunda nomenclatura tiene la forma ‘PC4-XXXXX’, y refleja la velocidad de transferencia máxima de la memoria medida en megabytes por segundo (MB/s). Como ejemplo, un módulo PC4-25600 puede alcanzar una velocidad de transferencia de hasta 25.600 MB/s.

ESTÁNDAR FRECUENCIA DE LA MEMORIA (MHZ) FRECUENCIA DEL BUS DE E/S (MHZ) TRANSFERENCIA DE DATOS (MT/S) NOMBRE DEL MÓDULO TASA DE TRANSFERENCIA MÁXIMA (MB/S) LATENCIA CAS (NS) TIMINGS (CL-TRCD-TRP) VOLTAJE
DDR4-1600 200 800 1.600 PC4-12800 12.800 12,5
13,75
15 10-10-10
11-11-11
12-12-12 1,2 voltios
DDR4-1866 233,33 933,33 1.866,67 PC4-14900 14.933,33 12,857
13,929
15 12-12-12
13-13-13
14-14-14 1,2 voltios
DDR4-2133 266,67 1.066,67 2.133,33 PC4-17000 17.066,67 13,125
14,063
15 14-14-14
15-15-15
16-16-16 1,2 voltios
DDR4-2400 300 1.200 2.400 PC4-19200 19.200 12,5
13,32
14,16
15 15-15-15
16-16-16
17-17-17
18-18-18 1,2 voltios
DDR4-2666 333,33 1.333,33 2.666,67 PC4-21333 21.333,33 12,75
13,50
14,25
15 17-17-17
18-18-18
19-19-19
20-20-20 1,2 voltios
DDR4-2933 366,67 1.466,67 2.933,33 PC4-23466 23.466,67 12,96
13,64
14,32
15 19-19-19
20-20-20
21-21-21
22-22-22 1,2 voltios
DDR4-3200 400 1.600 3.200 PC4-25600 25.600 12,5
13,75
15 20-20-20
22-22-22
24-24-24 1,2 voltios
La latencia, en detalle: qué son los ‘timings’ y qué impacto tienen en el rendimiento
Las frecuencias de reloj a las que trabajan los chips de memoria y el bus de entrada y salida nos permiten comparar de una forma intuitiva el rendimiento de los módulos de memoria. Sin embargo, hay otro parámetro que también condiciona mucho su productividad y al que, por tanto, nos interesa prestar atención: la latencia. Los fabricantes de módulos de memoria suelen indicárnosla utilizando la nomenclatura ‘CL-tRCD-tRP-tRAS’, de manera que un módulo DDR4-3200 PC4-25600 puede tener unos timings de, por ejemplo, 16-18-18-38. En este caso el parámetro CL tiene un valor de 16, tRCD de 18, tRP de 18, y, por último, tRAS de 38. Estas cuatro cantidades nos indican cuántos ciclos de reloj invierte la memoria principal en llevar a cabo unas operaciones determinadas, por lo que lo ideal es que sean lo más bajas posible. Veamos con más detalle qué significan estos parámetros:

CL (CAS Latency): el acrónimo CAS procede del término en inglés Column Address Strobe, que podemos interpretar como la señalización de las posiciones de memoria de una columna de la matriz de condensadores que constituye la memoria principal. Este parámetro nos indica cuántos ciclos de reloj necesita la memoria a petición del controlador para leer el primer bit de información de un dato una vez que ha accedido a la fila en la que reside la posición de memoria que lo contiene. Una forma de simplificar esta definición para hacerla un poco más asequible, aunque también algo menos precisa, consiste en describir esta latencia como el número de ciclos de reloj que transcurren desde que se lleva a cabo la solicitud de un dato hasta que está disponible. El parámetro CL suele ser el que los fabricantes de módulos de memoria describen con más claridad.
tRCD (Row address to Column address Delay time): este parámetro nos indica el número mínimo de ciclos de reloj que transcurrirán desde el instante en el que el controlador señaliza una fila de posiciones de memoria hasta el momento en el que accede a la columna que contiene la posición en la que reside el dato que se pretende recuperar. Es importante que tengamos en cuenta que el timing tRCD nos está indicando un valor mínimo de ciclos de reloj, y no un valor absoluto.
tRP (Row Precharge time): este parámetro refleja el número mínimo de ciclos de reloj que transcurrirán desde el instante en el que se lleva a cabo la petición de acceso a una nueva posición de memoria hasta el momento en el que se accede a la fila en la que reside la posición que contiene el dato que se pretende recuperar. Al igual que sucede con el parámetro tRCD, el timing tRP nos indica un valor mínimo de ciclos de reloj.
tRAS (Row Address Strobe time): el último timing que nos interesa conocer describe el número mínimo de ciclos de reloj durante el que debe estar accesible la fila de la matriz de memoria en la que reside la posición en la que necesitamos leer o escribir para que esta operación se lleve a cabo con éxito. Al igual que tRCD y tRP, el parámetro tRAS nos indica un valor mínimo de ciclos de reloj, y no un valor absoluto.

La refrigeración importa y el ‘overclocking’ también es posible en la RAM
La tabla a la que hemos recurrido un poco más arriba para indagar en las características de los estándares de memoria aprobados por JEDEC no recoge todos los módulos que podemos encontrar actualmente en las tiendas. Si nos damos una vuelta virtual por cualquier tienda on-line especializada en componentes para PC descubriremos que la mayor parte de los fabricantes de memoria vende módulos capaces de trabajar a una frecuencia de reloj superior a la que nos promete el estándar DDR4-3200. Algunos incluso superan sensiblemente los 4.000 MHz efectivos, por lo que sobre el papel son una opción atractiva si somos ambiciosos y queremos afinar al máximo el rendimiento de nuestro PC.

La frecuencia de reloj no es el único parámetro que condiciona el rendimiento de la RAM. La latencia también es crucial
Eso sí, antes de comprar estos módulos de memoria, que suelen ser bastante más caros que los módulos DDR4-3200, es importante que nos cercioremos de que nuestra placa base puede trabajar con ellos. Las placas de gama media y alta que contemplan la posibilidad de realizar overclocking suelen permitirnos instalar este tipo de módulos de memoria. Además, en ocasiones los fabricantes de placas base lanzan actualizaciones de la BIOS que habilitan la compatibilidad con módulos de memoria más rápidos. Por esta razón, si estamos pensando en hacernos con este tipo de módulos de alto rendimiento es una buena idea comprobar si está disponible alguna actualización de la BIOS que lleve nuestra placa base un paso más allá en este terreno.

En cualquier caso, es importante que tengamos en cuenta, como hemos visto unos párrafos más arriba, que la frecuencia de reloj no es el único parámetro que condiciona el rendimiento de la memoria principal de nuestro PC. La latencia también es crucial, por lo que nos interesa fijarnos en los timings de los módulos que nos han llamado la atención para cerciorarnos de que realmente van a ofrecernos una mejora del rendimiento palpable. Una vez que estén en nuestro poder podremos aprovechar las capacidades de overclocking de nuestra placa base para actuar sobre los timings, el voltaje y la frecuencia de reloj con el propósito de obtener el mejor rendimiento posible, pero sin comprometer la estabilidad de nuestro equipo.


Una herramienta interesante al alcance de los usuarios a los que les parecen apetecibles estas memorias DDR4 de alto rendimiento son los perfiles XMP (eXtreme Memory Profile) creados inicialmente por Intel, pero que también funcionan en la mayor parte de las placas base para procesadores Ryzen y Ryzen Threadripper de AMD. Estos perfiles no son otra cosa que un conjunto de atributos que describen los parámetros de funcionamiento óptimos de un módulo de memoria. Están grabados en un circuito integrado alojado en el propio módulo, y gracias a ellos podemos conseguir que los módulos de alto rendimiento nos entreguen el 100% de su potencial y funcionen correctamente sin necesidad de que nos veamos obligados a practicar overclocking de forma manual.

Una característica de los módulos de memoria en la que también nos interesa fijarnos, sobre todo si hemos decidido hacernos con módulos de alto rendimiento diseñados para trabajar a frecuencias de reloj muy altas, es su diseño térmico. Los chips alojados en ambas caras de la placa de circuito impreso del módulo de memoria pueden disipar una parte importante de la energía que reciben en forma de calor, por lo que es una buena idea apostar por módulos que incorporen sus propios disipadores. La mayor parte de las memorias DDR4 de alto rendimiento los utilizan. Aun así, si tenemos la posibilidad de elegir entre unos módulos con especificaciones idénticas, pero unos sin disipador y otros con él, merece la pena apostar por estos últimos. Incluso aunque sean un poco más caros. Una refrigeración más cuidada puede contribuir decisivamente a incrementar la estabilidad de nuestro PC.

Qué tipo y qué cantidad de memoria nos interesa instalar en nuestro PC
Ya solo nos queda tomar dos decisiones que nos ayudarán a resolver con garantías la memoria principal de nuestro equipo. La primera consiste en elegir un tipo de módulos entre todos los que podemos encontrar actualmente en el mercado. Cuanto más rápida sea nuestra memoria DDR4 y más baja sea su latencia, mejor. Por esta razón, lo ideal es que nos quedemos con los módulos más rápidos que nos podamos permitir, siempre que, eso sí, estén soportados por nuestra placa base. La mayor parte de las placas modernas puede trabajar sin problemas con módulos DDR4-3200, y muchas de ellas también admiten memorias aún más rápidas.

Lo ideal es que instalemos en nuestro PC los módulos más rápidos y con menos latencia que nos podamos permitir
Si estamos diseñando un PC para ofimática y navegar por Internet no es necesario que seamos demasiado ambiciosos con la memoria principal, pero si vamos a utilizar nuestro ordenador para crear contenidos y jugar posiblemente sí nos interesará contar con una memoria rápida y de buena calidad que nos asegure un rendimiento y una estabilidad óptimos. La última decisión que nos veremos obligados a tomar no es otra que elegir la cantidad de RAM que tendrá nuestro PC.

Según nuestra experiencia un equipo para ofimática, reproducción de contenidos y navegación en Internet debe contar al menos con 8 GB de memoria, y una máquina para jugar, editar vídeo, procesar fotografías o trabajar con animaciones, entre otras posibles tareas, debería apoyarse al menos en 16 GB de RAM. Si vuestro presupuesto os permite instalar en vuestro PC más memoria, perfecto porque rendirá mejor cuando esté sometido a una gran carga de trabajo, pero estas son las cantidades que os proponemos como punto de partida.

Responder Citando
  #7  
Antiguo 19-May-2020, 21:56
Avatar de Amaya
Amaya Amaya está desconectado
Colaboradora
 
Fecha de Ingreso: 02-February-2020
Mensajes: 10,102
Gracias: 19
Agradeció 12 veces en 6 publicaciones
Predeterminado




[Solo los usuarios registrados y activados pueden ver los enlaces. Haga clic aquí para registrarse ... ]







[Solo los usuarios registrados y activados pueden ver los enlaces. Haga clic aquí para registrarse ... ]
Responder Citando
  #8  
Antiguo 25-Jun-2020, 20:49
Avatar de winche
winche winche está desconectado
 
Fecha de Ingreso: 12-August-2019
Mensajes: 7,184
Gracias: 0
Agradeció 7 veces en 6 publicaciones
Moil la tarjeta gráfica

la tarjeta gráfica

La tarjeta gráfica suele apropiarse de una parte importante del presupuesto que dedicamos a nuestros ordenadores, sobre todo si estamos decididos a poner a punto un PC para juegos o creación de contenidos medianamente ambicioso. No cabe duda de que es un componente que tiene un impacto enorme en nuestra experiencia, por lo que una elección desacertada podría echar por tierra nuestras expectativas y obligarnos a cambiarlo mucho antes de lo que habíamos previsto. Afortunadamente, podemos evitarlo.

Este artículo es la cuarta entrega de una guía extensa en la que los principales componentes y los periféricos más relevantes de un PC tendrán su dosis de protagonismo. Nuestra intención es ayudar a los usuarios que han decidido montar un equipo a la medida a encontrar los componentes que resuelven mejor sus necesidades y encajan mejor en su presupuesto, y para lograrlo dedicaremos a la mayor parte de ellos un artículo en exclusiva. La protagonista indiscutible de este artículo es la tarjeta gráfica de la misma forma en que en las anteriores entregas de la guía hablamos de la placa base, el procesador y la memoria principal.

La tarjeta gráfica, en detalle: estas son las características que más nos interesan
Antes de que profundicemos en las especificaciones y las tecnologías con las que nos interesa familiarizarnos para encontrar la solución gráfica que resuelve mejor nuestras necesidades es interesante que nos planteemos cuándo es aconsejable que instalemos en nuestro PC una tarjeta gráfica dedicada. Y es que no siempre es necesario dedicar una parte de nuestro presupuesto a este componente. La lógica gráfica que han incorporado tanto AMD como Intel a sus últimas familias de microprocesadores tiene la potencia necesaria para resolver con suficiencia algunos escenarios de uso.

Si nuestro objetivo es diseñar y construirnos un PC exclusivamente para ofimática, navegación en Internet y reproducción de contenidos, no necesitaremos una tarjeta gráfica dedicada. Los gráficos implementados en los procesadores Ryzen de 3ª generación de AMD y en los Core de 10ª generación de Intel, así como en iteraciones anteriores de estos chips, son perfectamente capaces de resolver este escenario de uso. Eso sí, es importante que nos cercioremos de que elegimos un microprocesador que incorpore lógica gráfica porque no todos la integran.

Dedicar una parte de nuestro presupuesto a una tarjeta gráfica tiene todo el sentido si queremos usar nuestro PC para jugar y crear contenidos, pero esto no significa que con los gráficos integrados en la CPU no podamos jugar y crear

Dedicar una parte de nuestro presupuesto a una tarjeta gráfica discreta tiene todo el sentido si queremos utilizar nuestro PC para jugar y crear contenidos, pero esto no significa que con los gráficos integrados en la CPU no podamos jugar y crear. Si lo hacemos ocasionalmente y nos basta jugar a 1080p, con una cadencia de imágenes que habitualmente se moverá entre 30 y 60 FPS, y aceptamos que la calidad gráfica no sea siempre la más alta, la lógica gráfica implementada en algunos procesadores de Intel y AMD nos bastará. Los gráficos integrados más capaces, y los que mejor experiencia nos ofrecerán, son los Radeon RX Vega 11 que podemos encontrar en algunos procesadores Ryzen de 2ª y 3ª generación, y los HD Graphics 630 que nos propone Intel en algunos de sus microprocesadores Core de última hornada.


Pero si queremos utilizar nuestro PC para jugar a 1080p o resoluciones superiores con la máxima calidad gráfica posible y cadencias de imágenes por segundo sostenidas de 60 FPS o más, la mejor opción es apostar por una tarjeta gráfica discreta. Lo mismo sucede con la creación de contenidos. Si editamos vídeo, diseñamos en 3D o realizamos animaciones, y necesitamos que nuestro equipo nos ofrezca una experiencia lo más satisfactoria posible en este escenario de uso, nos vendrá muy bien tener una tarjeta gráfica dedicada. Aunque, eso sí, la creación de contenidos no suele ser tan exigente con el hardware gráfico como los juegos, especialmente los de última hornada.

En la siguiente sección del artículo indagaremos en el porfolio actual de soluciones gráficas de AMD y NVIDIA, pero antes de hacerlo nos interesa familiarizarnos con las especificaciones y las tecnologías que van a ayudarnos a identificar qué nos proponen las tarjetas gráficas que tenemos en el punto de mira. Algunas de esas características, como el filtrado de texturas, las técnicas de sombreado, el suavizado de los bordes dentados o el trazado de rayos, tienen un impacto directo en la calidad de imagen. Y otras, como la frecuencia de reloj a la que trabajan la GPU y la memoria o el número de núcleos gráficos, condicionan claramente las cadencias de fotogramas por segundo sostenida y máxima que nos va a ofrecer nuestra tarjeta gráfica.

Procesador gráfico o GPU (‘Graphics Processing Unit’)
La GPU es el auténtico corazón de nuestra tarjeta gráfica. Al igual que la CPU es un circuito integrado muy complejo que integra varios miles de millones de transistores diminutos y varios núcleos que tienen capacidad de procesamiento independiente. Sin embargo, aquí acaba el parecido entre estos dos componentes. Y es que la arquitectura de la CPU y la GPU persiguen objetivos muy diferentes. El paralelismo, una propiedad que podemos definir como la capacidad que tiene un circuito integrado de procesar varias tareas simultáneamente, es muy importante cuando ejecutamos algunas aplicaciones en una CPU, como, por ejemplo, las herramientas de renderizado en 3D. Sin embargo, el paralelismo en una GPU no solo es muy importante; es crucial.

Las tareas que debe llevar a cabo una GPU para generar los gráficos que vemos en nuestro monitor se caracterizan por exigir un esfuerzo de cálculo muy grande, y, sobre todo, por ser paralelizables de una forma muy natural. Esta es la razón por la que los procesadores gráficos tienen una cantidad de núcleos muy superior a la de las CPU. Habitualmente estas últimas tienen entre 2 y 64 núcleos, que pueden implementar o no la tecnología SMT (Simultaneous Multi-Threading) para que cada uno de ellos sea capaz de procesar hasta dos hilos de ejecución simultáneamente. Sin embargo, una GPU moderna puede incorporar hasta más de 4.000 núcleos, que, eso sí, son más pequeños y sencillos que los núcleos de una CPU.



Las arquitecturas implementadas por AMD y NVIDIA en sus procesadores gráficos son muy diferentes, pero tienen algo muy importante en común: ambas han sido diseñadas para asumir enormes cargas de trabajo en paralelo de la forma más eficiente posible. Lo curioso es que no solo los juegos y las aplicaciones gráficas pueden sacar partido a la enorme capacidad de procesamiento en paralelo de las GPU; otras herramientas también pueden hacerlo, aunque para lograrlo tienen que haber sido programadas de manera que su código exprese el paralelismo que puede ser ejecutado en una GPU como si esta fuese un procesador de propósito general.

Para ayudar a los programadores a sacar partido al potencial de procesamiento en paralelo que tienen sus GPU, AMD y NVIDIA han desarrollado Radeon Open Compute y CUDA respectivamente. Estas dos plataformas facilitan la escritura de aplicaciones que pueden ejecutar una parte de su código sobre la GPU, liberando de esta forma a la CPU de una parte importante del esfuerzo. Algunas de las herramientas comerciales que pueden aprovechar los recursos de los procesadores gráficos actuales son Photoshop, Premiere Pro, AutoCAD, CATIA, SolidWorks o 3ds Max, entre muchas otras aplicaciones. Lo interesante de todo esto es que la GPU de nuestro PC no tiene un impacto muy profundo solo en los juegos, sino también en algunas de las aplicaciones de edición de vídeo, retoque fotográfico o diseño en 3D con las que algunos usuarios estamos familiarizados.

La frecuencia de reloj en las tarjetas gráficas
El ritmo de trabajo de la GPU y la memoria local integrada en la tarjeta gráfica lo determina la señal de reloj de la misma forma en que también marca la velocidad de trabajo de la CPU y la memoria principal de nuestro PC. La frecuencia de reloj tiene un impacto muy importante en el rendimiento del procesador gráfico, pero no es en absoluto el único parámetro que condiciona su productividad. La cantidad de núcleos que incorpora la GPU, la forma en que están implementados y los algoritmos que intervienen en el renderizado de las imágenes, como las técnicas de sombreado adaptativo, de eliminación de los bordes dentados (antialiasing), el filtrado de las texturas o el ray tracing, también condicionan su rendimiento.

Al igual que la CPU, la GPU no trabaja a una frecuencia de reloj constante. AMD y NVIDIA nos indican dos valores diferentes en las especificaciones de sus procesadores gráficos: las frecuencias de reloj base y máxima. La primera refleja la velocidad a la que trabajan los núcleos de la GPU cuando la mayor parte de ellos está siendo sometida a un estrés importante, y la segunda indica la frecuencia máxima a la que pueden operar algunos de esos núcleos cuando el estrés al que está siendo sometida la GPU no es suficiente para alcanzar su umbral de consumo. Si una tarea es lo suficientemente liviana algunos núcleos podrán incrementar su ritmo de trabajo más allá de la frecuencia de reloj base siempre que, eso sí, la energía total disipada por el procesador gráfico en forma de calor lo mantenga por debajo de su umbral máximo de temperatura.

TFLOPS: qué miden y por qué son importantes
Esta unidad nos permite evaluar el rendimiento de un procesador gráfico midiendo el número de operaciones en coma flotante que es capaz de llevar a cabo en un segundo. Es un dato importante porque nos permite hacernos una idea bastante precisa acerca de la capacidad de cálculo de la GPU, pero no es la única especificación que describe su rendimiento. La forma en que están optimizados los algoritmos que intervienen en el renderizado de las imágenes, que pueden ser aplicados con más o menos ingenio, es otra característica que también suele tener un impacto muy profundo en la productividad del procesador gráfico.

Los TFLOPS miden el número de operaciones en coma flotante que es capaz de llevar a cabo una GPU en un segundo
La unidad FLOPS procede del término en inglés Floating point Operations Per Second, y, como hemos visto en el párrafo anterior, se calcula midiendo cuántas operaciones consigue llevar a cabo la GPU en un segundo cuando trabaja con números representados en coma flotante. Esta es una notación que se utiliza habitualmente en cálculo científico porque nos permite representar de una forma eficiente números muy grandes y muy pequeños. Sin embargo, la precisión con la que trabajan las GPU no es siempre la misma. Como podemos intuir, su rendimiento se incrementa cuando se reduce la precisión de los números en coma flotante con los que están trabajando, de ahí que antes de comparar los TFLOPS de dos procesadores gráficos diferentes debamos cerciorarnos de que están trabajando con la misma precisión.

Las notaciones utilizadas habitualmente para representar números en coma flotante son FP32 y FP16 (la ‘F’ y la ‘P’ proceden del término en inglés floating point). La primera de ellas se conoce como precisión simple y nos ofrece una mayor exactitud que la segunda debido a que codifica los números utilizando el formato de coma flotante de 32 bits. FP16, sin embargo, representa los números en coma flotante utilizando 16 bits, por lo que tiene la mitad de precisión que FP32. La diferencia de precisión que existe entre las operaciones FP16 y FP32 provoca que el rendimiento de una GPU sea mayor cuando lleva a cabo las que tienen menor precisión, de ahí que si utilizamos los TFLOPS para comparar la productividad de dos procesadores gráficos debamos comprobar que están describiendo el mismo tipo de operaciones.


Este es el aspecto que tiene una tarjeta gráfica Radeon VII de AMD si la desensamblamos. Su GPU tiene nada menos que 13.200 millones de transistores. Es un auténtico monstruo.
‘Ray tracing’: qué es y qué impacto tiene en la calidad de imagen
El trazado de rayos (ray tracing) parece haber llegado para quedarse. NVIDIA lo introdujo junto a la primera generación de GPU GeForce RTX, y AMD lo implementará en sus próximos procesadores gráficos con arquitectura RDNA 2. No cabe duda de que es la prestación gráfica de moda, pero lo realmente interesante para nosotros, los usuarios, es conocer con cierta precisión qué es y qué impacto tiene en nuestra experiencia. Los algoritmos de renderizado mediante trazado de rayos imitan cómo se comporta la luz en el mundo real para generar imágenes bidimensionales a partir de modelos en 3D con un acabado fotorrealista.

El 'ray tracing' imita cómo se comporta la luz en el mundo real para generar imágenes bidimensionales fotorrealistas
Las ecuaciones que nos permiten describir matemáticamente cómo se comporta la luz como parte de un algoritmo de renderizado son bastante complejas. Un procesador gráfico puede resolverlas, por supuesto, pero el problema es que el número de cálculos que debe realizar para obtener el color de cada uno de los píxeles de la imagen bidimensional que vamos a generar es muy elevado. Es más un problema de cantidad que de complejidad, sobre todo si nos ceñimos al trazado de rayos recursivo, que es el que se utiliza actualmente.

Esta es la razón por la que las empresas que deben afrontar el renderizado de imágenes en 3D, como, por ejemplo, las que se dedican a los efectos especiales para cine mediante CGI o las de animación por ordenador, tienen unas «granjas» de ordenadores enormes. Esos equipos son, precisamente, los que deben llevar a cabo los cálculos matemáticos que exige el renderizado mediante trazado de rayos. La razón por la que hasta ahora este método no era viable en tiempo real en el ecosistema de nuestros ordenadores, al menos no con la eficiencia necesaria, no es otra que la ingente cantidad de cálculos que debe llevar a cabo la GPU.


Turing, la arquitectura que NVIDIA está utilizando en sus últimas GPU, implementa mediante hardware los recursos necesarios para hacer viable en nuestros ordenadores un renderizado híbrido que combina la rasterización tradicional, que es el método de renderizado que han usado hasta ahora, con el renderizado mediante trazado de rayos. Esto significa que los desarrolladores de videojuegos pueden decidir qué tecnología les ofrece el acabado gráfico que tienen en mente, analizando previamente su impacto en las prestaciones.

El objetivo último del trazado de rayos es dotar a los juegos de un acabado gráfico más cuidado sin que los cálculos que conlleva hagan ineficiente el renderizado en tiempo real. Esto quiere decir, sencillamente, que un único fotograma puede contener ambos métodos de renderizado, balanceando de esta forma la calidad visual y el esfuerzo de cálculo que debe afrontar la GPU. Para hacer posible el renderizado mediante ray tracing la familia de procesadores gráficos GeForce RTX de NVIDIA cuenta con unas nuevas unidades funcionales integradas en la lógica de la GPU llamadas RT core (Ray Tracing core) que no son otra cosa que procesadores dedicados específicamente a este tipo de renderizado.

Los procesadores gráficos GeForce RTX de NVIDIA cuentan con unos núcleos integrados en la lógica de la GPU llamados 'RT core' y diseñados expresamente para llevar a cabo el renderizado por trazado de rayos

Estas unidades son las que deben llevar a cabo los cálculos matemáticos que requiere el renderizado, pero no acometen este reto solas: cuentan con la ayuda de la inteligencia artificial. Y es que una parte importante de la arquitectura Turing es su capacidad de utilizar el aprendizaje automático para reducir tanto como sea posible el número de rayos que es necesario procesar durante el renderizado. Los juegos que ya incorporan esta tecnología nos demuestran que su impacto en la calidad gráfica es beneficioso, pero, al mismo tiempo, el trazado de rayos penaliza seriamente el rendimiento de la GPU.

El hecho de que tanto los próximos procesadores gráficos de AMD como Xbox Series X y PlayStation 5 vayan a incorporar esta tecnología contribuirá a afianzar más el trazado de rayos. Aún no sabemos si las próximas GPU de AMD conseguirán afrontar este modo de renderizado de una forma más eficiente que los actuales procesadores gráficos de NVIDIA, pero es muy probable que la complejidad de esta innovación acarree un margen de mejora importante que a los usuarios no nos quedará más remedio que asumir. El ray tracing nos ofrece mejores gráficos, sí, pero su consolidación definitiva llegará cuando pueda convivir con unas cadencias de imágenes por segundo sostenidas a resoluciones altas que actualmente no parecen estar al alcance ni siquiera de las tarjetas gráficas que incorporan la GPU de NVIDIA más avanzada.

Memoria dedicada: las tecnologías GDDR y HBM
La cantidad y el tipo de memoria que acompaña a la GPU condicionan seriamente las prestaciones de la tarjeta gráfica debido a que el flujo de información entre estos dos componentes es constante. Los procesadores gráficos diseñados para ofrecernos cadencias de imágenes elevadas a altas resoluciones necesitan verse respaldados por una memoria local que habitualmente tiene una capacidad de 8 GB, aunque también hay soluciones de gama alta que incorporan hasta 16 GB. En cualquier caso, el tamaño de la memoria que trabaja codo con codo con la GPU no es lo único que importa. También es crucial la tecnología que utiliza porque condiciona seriamente la velocidad de transferencia máxima que es capaz de alcanzar.

Las tarjetas gráficas que podemos encontrar actualmente en las tiendas utilizan tres tipos de memoria: GDDR5, GDDR6 o HBM2
Las tarjetas gráficas que podemos encontrar actualmente en las tiendas utilizan tres tipos de memoria: GDDR5, GDDR6 o HBM2. Los dos primeros recurren a la misma base tecnológica utilizada por la memoria principal de nuestros ordenadores e implementan interfaces de hasta 256 bits. Las tarjetas gráficas más modernas utilizan memoria GDDR6, y no GDDR5, debido a que es capaz de alcanzar un ancho de banda mayor, de hasta 16 Gbps, y opera con un voltaje más bajo (1,35 voltios). Sin embargo, AMD utiliza en sus tarjetas gráficas Radeon VII y Radeon RX Vega memoria HBM2, que recurre a una tecnología diferente a la de las memorias de tipo GDDR.

No es necesario que compliquemos más este artículo indagando en las peculiaridades de la arquitectura de los chips de memoria HBM2, pero es interesante que sepamos que el bus que permite la transferencia de información entre la GPU y la memoria puede tener hasta 4.096 bits, una cifra muy superior a los 512 bits máximos de la interfaz GDDR6. Esta interfaz es posible en gran medida gracias a la estructura en forma de pila que tienen los circuitos integrados de memoria HBM2, y les permite alcanzar un ancho de banda muy superior al de la memoria GDDR6. De hecho, la memoria HBM2 de una tarjeta gráfica Radeon VII alcanza un ancho de banda máximo de 1.024 GB/s, una cifra muy superior a los 448 GB/s de una tarjeta gráfica con GPU GeForce RTX 2080 SUPER. Pero hay una razón de peso que provoca que la memoria HBM2 no esté presente en más tarjetas gráficas: su estructura es más compleja que la de las memorias GDDR6, y, por este motivo, es mucho más caro fabricarla.

Esto es lo que nos prometen las últimas tarjetas gráficas de AMD y NVIDIA
Como he mencionado unos párrafos más arriba, la arquitectura de los procesadores gráficos de AMD y NVIDIA es muy diferente, por lo que la forma en que estas compañías presentan las especificaciones de sus soluciones también lo es. Las dos tablas que tenéis debajo de estas líneas recogen algunas de las GPU de estas marcas que podemos encontrar actualmente en las tiendas. Nos ha sido imposible recopilarlas todas porque el porfolio que tienen es muy amplio y no podemos incluir todo su catálogo en una única tabla. Aun así, no importa debido a que el propósito de estas tablas es ayudarnos a identificar las diferencias que existen entre unos procesadores gráficos y otros de la forma más sencilla posible.

Como podéis ver, una de las diferencias más relevantes entre unas GPU y otras, más allá de su arquitectura, es el número de núcleos que integran. Cuanto mayor sea esta cantidad más trabajo en paralelo podrá asumir el procesador gráfico, y, por tanto, mayor será su rendimiento bajo estrés intenso. Otra diferencia relevante entre unos modelos y otros reside en las frecuencias de reloj base y máxima a las que es capaz de trabajar la GPU. Su rendimiento en TFLOPS y su capacidad de relleno de píxeles y texturas dependen en gran medida del número de núcleos gráficos y la frecuencia de reloj, pero en su productividad global también interviene la memoria.

Las tarjetas de gama de entrada suelen tener 4 GB; las de gama media, 6 GB; y las de gama alta, 8 GB, aunque algunas, las más ambiciosas, apuestan por 12 o 16 GB. Todas las GPU de NVIDIA conviven con memoria GDDR6, pero AMD apuesta en algunas de sus soluciones por chips HBM2. La tabla que tenéis a continuación refleja las especificaciones de algunos de los procesadores gráficos de AMD que podemos encontrar actualmente en el mercado, en el que conviven soluciones de última hornada con propuestas que llevan varios años en las tiendas:

AMD RADEON VII RADEON RX 5700 XT RADEON RX 5600 XT RADEON RX 5500 XT RADEON RX VEGA 64 RADEON RX 590 RADEON RX 570
UNIDADES DE CÁLCULO 60 40 36 22 64 36 32
FRECUENCIA DE RELOJ BASE 1.400 MHz 1.605 MHz N.d. N.d. 1.247 MHz 1.469 MHz 1.168 MHz
FRECUENCIA DE RELOJ MÁXIMA 1.800 MHz 1.905 MHz 1.560 MHz 1.845 MHz 1.546 MHz 1.545 MHz 1.244 MHz
RENDIMIENTO EN PRECISIÓN SIMPLE 13,8 TFLOPS 9,75 TFLOPS 7,19 TFLOPS 5,2 TFLOPS 12,6 TFLOPS 7,1 TFLOPS 5,1 TFLOPS
PROCESADORES DE TRANSMISIÓN 3.840 2.560 2.304 1.408 4.096 2.304 2.048
VELOCIDAD RELLENO DE PÍXELES 115,26 GP/s 121,9 GP/s 99,8 GP/s 59 GP/s 98,9 GP/s 49,54 GP/s 39,808 GP/s
VELOCIDAD RELLENO DE TEXTURAS 432,24 GT/s 304,8 GT/s 224,64 GT/s 162,36 GT/s 395,8 GT/s 222,48 GT/s 159,232 GT/s
TAMAÑO DE LA MEMORIA 16 GB 8 GB 6 GB 8 GB 8 GB 8 GB 8 GB
TIPO DE MEMORIA HBM2 GDDR6 GDDR6 GDDR6 HBM2 GDDR5 GDDR5
VELOCIDAD DE LA MEMORIA 4 Gbps 14 Gbps 14 Gbps 14 Gbps 1,89 Gbps 8 Gbps 7 Gbps
INTERFAZ DE MEMORIA 4.096 bits 256 bits 192 bits 192 bits 2.048 bits 256 bits 256 bits
ANCHO DE BANDA DE LA MEMORIA 1.024 GB/s 448 GB/s 336 GB/s 224 GB/s 483,8 GB/s 256 GB/s 224 GB/s
CONSUMO TÍPICO 300 vatios 225 vatios 150 vatios 130 vatios 295 vatios N.d. 150 vatios
La elección de una tarjeta gráfica u otra está condicionada tanto por el rendimiento que queremos que nos ofrezca como por nuestro presupuesto. Todos los modelos relativamente recientes, incluso los más económicos, nos permiten jugar a 1080p con suficiencia, aunque no todos nos garantizan una cadencia de imágenes estable de 60 FPS o más con la mayor calidad visual. Si nos ceñimos al catálogo de AMD de una Radeon RX 570, que es una tarjeta gráfica que lleva en las tiendas algo más de dos años y que podemos encontrar sin dificultad entre 120 y 150 euros, podemos esperar que mueva la mayor parte de los juegos a 1080p y con la mejor calidad gráfica con una cadencia sostenida entre 30 y 60 FPS.

Si aspiramos a alcanzar una tasa de imágenes sostenida superior a los 60 FPS a 1080p, o si queremos coquetear con la resolución 1440p, una Radeon RX 590, que se puede conseguir por unos 220 euros, o una Radeon RX 5700 XT, con un precio de partida de unos 380 euros, son dos de las opciones que podemos contemplar. Y si ponemos nuestros ojos sobre la resolución 2160p y nuestro presupuesto es generoso podemos fijarnos, entre otras opciones, en los modelos Radeon RX Vega 64 y Radeon VII.

La elección de una tarjeta gráfica u otra está condicionada tanto por el rendimiento que queremos que nos ofrezca como por nuestro presupuesto

La primera lleva más de dos años en el mercado, se puede conseguir a partir de unos 480 euros y nos permitirá jugar a 2160p con una cadencia que en la mayor parte de los juegos oscilará entre 35 y 60 FPS. La Radeon VII es una opción más reciente que nos promete una cadencia media de unos 100 FPS a 1440p y entre 45 y 65 FPS a 2160p con la máxima calidad visual. La podemos conseguir por algo más de 600 euros. Un apunte importante: ninguna de estas tarjetas gráficas con GPU de AMD implementa ray tracing por hardware.

Ahora le toca el turno a NVIDIA. La siguiente tabla recoge las especificaciones de los procesadores gráficos de las familias GeForce RTX 20 y GTX 16, y persigue ayudarnos a comparar las características de las tarjetas gráficas que los incorporan:

NVIDIA GEFORCE RTX 2080 SUPER GEFORCE RTX 2070 SUPER GEFORCE RTX 2060 SUPER GEFORCE GTX 1660 TI GEFORCE GTX 1660 SUPER GEFORCE GTX 1660 GEFORCE GTX 1650 SUPER
NÚCLEOS CUDA 3.072 2.560 2.176 1.536 1.408 1.408 1.280
RTX-OPS 63 T 52 T 41 T No No No No
GIGARRAYOS/S 8 7 6 No No No No
FRECUENCIA DE RELOJ BASE 1.650 MHz 1.605 MHz 1.470 MHz 1.500 MHz 1.530 MHz 1.530 MHz 1.530 MHz
FRECUENCIA DE RELOJ MÁXIMA 1.815 MHz 1.770 MHz 1.650 MHz 1.770 MHz 1.785 MHz 1.785 MHz 1.725 MHz
TAMAÑO DE LA MEMORIA 8 GB 8 GB 8 GB 6 GB 6 GB 6 GB 4 GB
TIPO DE MEMORIA GDDR6 GDDR6 GDDR6 GDDR6 GDDR6 GDDR5 GDDR6
VELOCIDAD DE LA MEMORIA 15,5 Gbps 14 Gbps 14 Gbps 12 Gbps 14 Gbps 8 Gbps 12 Gbps
INTERFAZ DE MEMORIA 256 bits 256 bits 256 bits 192 bits 192 bits 192 bits 128 bits
ANCHO DE BANDA DE LA MEMORIA 448 GB/s 448 GB/s 448 GB/s 288 GB/s 336 GB/s 192 GB/s 192 GB/s
CONSUMO TÍPICO 250 vatios 215 vatios 175 vatios 120 vatios 125 vatios 120 vatios 100 vatios
Las tarjetas gráficas de la serie GeForce GTX 16 son una opción atractiva si nuestro presupuesto es comedido y estamos dispuestos a prescindir del ray tracing. Con una solución como la reciente GeForce GTX 1650 SUPER, que se puede conseguir por unos 175 euros, podemos jugar a 1080p y con la máxima calidad gráfica con una cadencia media que oscilará entre 45 y 60 FPS. Si preferimos jugar a 1440p con cierta soltura podemos apostar por una GeForce GTX 1660 SUPER, que alcanzará una tasa de imágenes entre 30 y 60 FPS a esta última resolución, y que superará con claridad los 60 FPS sostenidos a 1080p, todo ello con la máxima calidad gráfica. No es difícil encontrar esta tarjeta a un precio aproximado de 260 euros.

Los jugones que quieren acceder al 'ray tracing' deben hacerse necesariamente con una tarjeta de la serie GeForce RTX 20 de NVIDIA
Los jugones que prefieren hacerse con una tarjeta capaz de llevar a cabo el renderizado con trazado de rayos tendrán necesariamente que apostar por un modelo de la familia GeForce RTX 20. Una tarjeta gráfica con GPU GeForce RTX 2060 SUPER nos permitirá alcanzar una cadencia media de imágenes que oscilará entre 60 y 90 FPS a 1080p con la máxima calidad gráfica. A 1440p podemos aspirar a alcanzar unos 60 FPS estables, aunque en muchos juegos tendremos que reducir un poco la calidad visual. Esta tarjeta la podemos conseguir a partir de unos 410 euros.

Si queremos jugar a 1440p con la máxima calidad gráfica y una cadencia de imágenes por segundo estable de al menos 60 FPS tendremos que hacernos con una tarjeta con GPU GeForce RTX 2070 SUPER. Se puede conseguir desde unos 540 euros. Y si ponemos nuestros ojos sobre la resolución 2160p y no queremos sacrificar ni la calidad visual ni la tasa de imágenes, tendremos que apostar por una tarjeta gráfica con procesador GeForce RTX 2080 SUPER. Esta solución nos garantiza una experiencia fantástica a 1.440p, con tasas estables que en la mayor parte de los juegos oscilarán entre 70 y 110 FPS, y una cadencia que oscilará entre 45 y 70 FPS a 2160p con la máxima calidad visual. Eso sí, este monstruo no es nada barato. Si queremos hacernos con una de estas tarjetas tendremos que invertir en ella no menos de 770 euros aproximadamente.

La tarjeta gráfica está ligada estrechamente a nuestro monitor
Las prestaciones de nuestra tarjeta gráfica siempre van a estar limitadas por las características de nuestro monitor. Y a la inversa. Esta es una regla de oro que nos interesa mucho tener presente si queremos sacar el máximo partido posible a nuestro dinero. Si tenemos un monitor Full HD básico con una frecuencia de refresco de 60 Hz lo ideal es que nos hagamos con una tarjeta gráfica que nos garantice una cadencia de imágenes sostenida de 60 FPS a 1080p con la máxima calidad visual. En este escenario de uso no nos interesará invertir más dinero en una tarjeta gráfica que alcance, por ejemplo, una tasa de imágenes media de 100 FPS a 1080p porque no vamos a poder disfrutar el incremento de rendimiento que nos ofrece. Vamos a pagar más dinero por una experiencia que no va a ser mejor porque esta última tarjeta gráfica va a estar limitada por nuestro monitor.

El monitor y la tarjeta gráfica forman un tándem, y lo ideal es que sus especificaciones estén en sintonía si no queremos que ninguno de los dos resulte infrautilizado

Os propongo que ahora imaginemos un escenario diferente. Si hemos decidido invertir nuestro dinero en un monitor QHD capaz de alcanzar una velocidad máxima de actualización de 144 Hz y queremos sacarle el máximo partido, nos interesará hacernos con una tarjeta que sea capaz de arrojar una tasa de imágenes media a 1440p lo más cercana posible a los 144 FPS. En este contexto nos veríamos obligados a hacernos con una solución de AMD o NVIDIA de gama alta, pero es la única forma de aprovechar las características del monitor que hemos elegido. En definitiva, nos interesa recordar que el monitor y la tarjeta gráfica forman un tándem, y lo ideal es que sus especificaciones estén en sintonía si no queremos que ninguno de los dos resulte infrautilizado.

NVIDIA Quadro RTX y AMD Radeon Pro: las opciones idóneas para un PC profesional
Si el equipo que estamos diseñando no lo vamos a utilizar para jugar, pero necesitamos usarlo para crear modelos en 3D, editar vídeo en 4K o crear contenido de realidad virtual, entre otras opciones, es probable que no nos interese hacernos con una tarjeta gráfica para juegos. A diferencia de las soluciones de las que hemos hablado hasta ahora en este artículo, las Quadro RTX de NVIDIA y las Radeon Pro de AMD tienen una marcada vocación profesional. Por esta razón, cuentan con controladores optimizados para muchas de las aplicaciones profesionales de creación de contenidos, así como con certificaciones ISV (proveedores independientes de software).

Además, suelen tener una amplia dotación de salidas de vídeo que nos permite trabajar en entornos multimonitor, pueden aglutinar enormes cantidades de memoria, nos permiten trabajar con una profundidad de color de hasta 10 bits, e, incluso, crear contenidos con resolución 8K, entre otras opciones. Su precio oscila entre los poco más de 200 euros que cuesta una Radeon Pro WX 3200 y los más de 7.000 euros que nos veremos obligados a desembolsar si queremos hacernos con una Quadro RTX 8000. Como veis, el rango de precios que maneja el mercado de las tarjetas gráficas profesionales es incluso más amplio que el de las soluciones para juegos.

Responder Citando
  #9  
Antiguo 25-Jun-2020, 20:56
Avatar de winche
winche winche está desconectado
 
Fecha de Ingreso: 12-August-2019
Mensajes: 7,184
Gracias: 0
Agradeció 7 veces en 6 publicaciones
Moil El almacenamiento secundario

El almacenamiento secundario

Las unidades SSD están atrayendo todas las miradas. Hace varios meses que sabemos que PlayStation 5 y Xbox Series X apostarán por una de ellas, y no por un disco duro mecánico tradicional, para resolver su almacenamiento secundario. Y es comprensible que sea así por una razón de peso: su impacto en las prestaciones es enorme. Habitualmente incluso las unidades SSD más modestas baten con contundencia el rendimiento de los discos duros convencionales, lo que ha provocado que en el mundo de los ordenadores reinen desde hace ya muchos años.

No obstante, esta no es la única ventaja que ponen sobre la mesa estos dispositivos de almacenamiento. También consumen menos, son menos propensos a los fallos gracias a la ausencia de elementos móviles, son silenciosos y suelen tener una vida útil más larga. Demasiadas ventajas para prescindir de ellos en nuestro nuevo PC. Sin embargo, aún tenemos varios retos por delante. Por un lado tenemos que decidir qué tipo de unidad SSD resuelve mejor nuestras necesidades. Y por otra parte cabe la posibilidad de que, a pesar de sus inferiores prestaciones, también nos interese instalar en nuestro PC un disco duro mecánico o una unidad híbrida de tipo SSHD.

El impacto que tienen las unidades SSD en las prestaciones globales de un PC es enorme. No hay mejor opción para el sistema operativo y las aplicaciones

Este artículo es la quinta entrega de una guía extensa en la que los principales componentes y los periféricos más relevantes de un PC tienen su dosis de protagonismo. Nuestra intención es ayudar a los usuarios que han decidido montar un equipo a la medida a encontrar los componentes que resuelven mejor sus necesidades y encajan mejor en su presupuesto, y para lograrlo dedicaremos a la mayor parte de ellos un artículo en exclusiva. El protagonista indiscutible de esta entrega es el almacenamiento secundario de la misma forma en que en los anteriores artículos de la guía hablamos de la placa base, el procesador, la memoria principal y la tarjeta gráfica.


Estas son las tecnologías que reclaman un hueco en nuestro PC
Antes de que entremos en harina, un apunte interesante. Seguro que la mayor parte de vosotros ya estáis familiarizados con este concepto, pero la razón por la que identificamos a las unidades SSD y los discos duros como los dispositivos que dan forma al subsistema de almacenamiento secundario de un PC persigue desmarcarlos de la memoria principal, que encarna al subsistema de almacenamiento primario de nuestro ordenador. Como veis, esta forma de designar los dos sistemas de almacenamiento básicos de nuestros equipos tiene sentido. Os propongo que ahora indaguemos en las características de los tres tipos de unidades de almacenamiento que con más frecuencia nos interesa instalar en nuestro PC: las unidades SSD, los discos duros mecánicos y los discos híbridos SSHD.

Las unidades de estado sólido (SSD)
La velocidad máxima de lectura secuencial que pueden alcanzar las unidades SSD con interfaz PCI Express 3.0, que son probablemente las más utilizadas hoy, puede rozar los 3.500 MB/s en un escenario de uso real. Y hay unidades aún más rápidas que recurren a la interfaz PCI Express 4.0 para arrojar una velocidad de lectura secuencial efectiva que se mueve en la órbita de los 5.000 MB/s, y que aún queda muy por debajo del límite teórico que nos propone esta interfaz, que asciende a nada menos que 7,88 GB/s si nos ceñimos a un enlace PCIe 4.0 de cuatro líneas. Estas cifras tan atractivas nos llevan a nuestra primera conclusión: lo ideal es que el sistema operativo y nuestras aplicaciones residan en una unidad SSD.

Apostar por una unidad de estado sólido para instalar el software de nuestro PC tiene un impacto directo en el tiempo que requiere el sistema operativo para iniciarse, en el tiempo que transcurre desde que solicitamos la ejecución de una aplicación hasta que está disponible, en el tiempo invertido en la transferencia de grandes volúmenes de ficheros… Su impacto global en nuestra experiencia es muy positivo porque todo funciona de una forma más fluida. Con menos latencia. Los discos duros mecánicos convencionales pueden tener un hueco aún en nuestros ordenadores, como veremos más adelante, pero no es en absoluto aconsejable elegirlos para instalar ni el sistema operativo ni las aplicaciones.

Las primeras unidades SSD PCIe 4.0 NVMe arrojan una velocidad de lectura secuencial cercana a los 5.000 MB/s, pero aún están lejos de los 7,88 GB/s que nos promete el límite teórico de esta interfaz

El alto rendimiento de las unidades SSD está propiciado por varios componentes que tienen un rol esencial en su arquitectura, como son los chips de memoria NAND que contienen la información, la interfaz de conexión que se responsabiliza del transporte de los datos que envía y recibe la unidad de estado sólido, y el protocolo de control del bus. Para desarrollar este artículo no necesitamos profundizar en la tecnología de fabricación de los chips NAND Flash, pero si tenéis curiosidad y os apetece conocer cuáles son las características de las memorias SLC, MLC, TLC y QLC os sugiero que echéis un vistazo al artículo en el que explicamos en profundidad la arquitectura de las unidades SSD.

Con lo que sí nos interesa familiarizarnos antes de elegir una unidad de estado sólido para nuestro PC es con el protocolo de control del bus y la interfaz de conexión. La responsabilidad esencial del protocolo es administrar de la forma más eficiente posible el tráfico que circula por el bus que conecta la unidad SSD a nuestro ordenador. Los protocolos de control del bus más utilizados actualmente son AHCI (Advanced Host Controller Interface) y NVMe (Non-Volatile Memory Express). El primero es el más veterano y fue propuesto por Intel para gestionar el tráfico del bus utilizado por los dispositivos Serial ATA (SATA), mientras que NVMe es una interfaz mucho más moderna ideada expresamente para trabajar codo con codo con las unidades SSD.



La interfaz lógica NVMe ha sido diseñada ex profeso para sacar el máximo partido posible a la baja latencia y el elevado paralelismo de los enlaces PCI Express, de ahí que su rendimiento sea muy superior al que nos ofrece el protocolo AHCI. Si nos vemos en la tesitura de elegir entre dos unidades SSD diferentes, una de ellas con interfaz lógica AHCI y la otra NMVe, la elección está clara si nos ceñimos al rendimiento: lo ideal es optar por la unidad SSD con interfaz NVMe. La siguiente tabla resume algunas de las diferencias más relevantes entre estos dos protocolos de control. No es necesario que conozcamos con precisión qué nos está indicando cada uno de los campos de la tabla, pero pueden ayudarnos a intuir la superioridad de NVMe frente a AHCI:

AHCI NVME
PROFUNDIDAD MÁXIMA DE LAS COLAS Hasta 32 comandos por cola en una única cola Hasta 65.536 comandos por cola en un máximo de 65.535 colas
PARALELISMO Y MÚLTIPLES HILOS DE EJECUCIÓN Requiere sincronización para expedir un comando No requiere sincronización
SEÑALIZACIÓN DE INTERRUPCIONES Una sola interrupción 2.048 interrupciones
IOPS (ENTRADAS Y SALIDAS POR SEGUNDO) Hasta 100.000 Hasta 1.000.000
Con el bus que se responsabiliza de implementar la conexión física entre la unidad SSD y los principales subsistemas de nuestro PC sucede algo parecido a lo que acabamos de repasar en el contexto de la interfaz lógica. En este caso los enlaces más utilizados actualmente para conectar unidades de estado sólido son SATA y PCI Express (PCIe). La última versión de la primera de estas interfaces es capaz de alcanzar una velocidad de transferencia de hasta 600 MB/s por canal, mientras que utilizando PCIe 4.0 podemos transferir un máximo de 2.000 MB/s por canal. La diferencia de rendimiento entre un enlace y otro salta a la vista.

Actualmente conviven dos especificaciones diferentes de PCI Express con las que nos viene bien estar familiarizados, la 3.0 y la 4.0, porque, dependiendo del procesador y la placa base que elijamos para nuestro PC, cabe la posibilidad de que únicamente podamos acceder a una de ellas, la 3.0, o a ambas. La siguiente tabla resume las principales diferencias existentes entre las normas PCIe aprobadas, o pendientes de aprobación, por PCI-SIG (PCI Special Interest Group), que es la organización que se preocupa de definir sus especificaciones:

PCI EXPRESS AÑO DE PUBLICACIÓN TRANSFERENCIAS POR SEGUNDO VELOCIDAD DE TRANSFERENCIA X1 VELOCIDAD DE TRANSFERENCIA X2 VELOCIDAD DE TRANSFERENCIA X4 VELOCIDAD DE TRANSFERENCIA X8 VELOCIDAD DE TRANSFERENCIA X16
1.0 2003 2,5 GT/s 250 MB/s 500 MB/s 1 GB/s 2 GB/s 4 GB/s
2.0 2007 5 GT/s 500 MB/s 1 GB/s 2 GB/s 4 GB/s 8 GB/s
3.0 2010 8 GT/s 984,6 MB/s 1,969 GB/s 3,94 GB/s 7,88 GB/s 15,75 GB/s
4.0 2017 16 GT/s 1.969 MB/s 3,938 GB/s 7,88 GB/s 15,75 GB/s 31,51 GB/s
5.0 2019 32 GT/s 3.938 MB/s 7,88 GB/s 15,75 GB/s 31,51 GB/s 63,02 GB/s
6.0 Previsto para 2021 64 GT/s 7.877 MB/s 15,75 GB/s 31,51 GB/s 63,02 GB/s 126,03 GB/s
Las velocidades de transferencia que aparecen en esta tabla reflejan la capacidad máxima teórica del bus dependiendo del número de líneas de conexión que utiliza, pero resultan muy útiles para valorar la diferencia de rendimiento que existe entre una norma PCI Express y otra. Algo que a los usuarios nos interesa tener en cuenta es que hasta ahora solo AMD ha apostado por PCI Express 4.0, y se rumorea que Intel saltará directamente desde PCIe 3.0 a PCIe 5.0, por lo que parece poco probable que los procesadores Intel Core vayan a trabajar codo con codo con los enlaces PCIe 4.0.

No obstante, si estamos decididos a que nuestro nuevo PC saque partido a esta última interfaz de conexión tendremos que cerciorarnos de que elegimos la plataforma de AMD adecuada. Hasta ahora solo las placas base con chipset X570 o B550 implementan enlaces PCI Express 4.0. Las primeras, las que incorporan el chipset X570, son soluciones de gama alta que casi siempre tienen un precio elevado. Sin embargo, las segundas, las que apuestan por el chipset B550, están empezando a llegar al mercado con unos precios más asequibles, por lo que son las que encajan en los equipos de las gamas de entrada y media.

Los chipsets X570 y B550 han sido diseñados por AMD para convivir con microprocesadores Ryzen de 2ª y 3ª generación, pero tenemos a nuestro alcance otra plataforma de esta marca que también nos permite acceder a la interfaz PCIe 4.0: los Ryzen Threadripper. Los usuarios que estén decididos a hacerse con un procesador Threadripper de 3ª generación se verán obligados a decantarse por una placa base con chipset TRX40, que, al igual que los dos que acabamos de revisar, habilita el uso de enlaces PCIe 4.0.

Los chipsets de AMD X570 y B550 para procesadores Ryzen, y el TRX40 para Threadripper, ponen a nuestro alcance la interfaz PCIe 4.0
La capacidad de procesamiento multihilo de estos procesadores es fantástica, pero, eso sí, son soluciones de gama alta y tienen un precio en consonancia con su rendimiento. Las placas base para los últimos Threadripper también suelen ser sensiblemente más caras que las placas para los procesadores Ryzen de 3ª generación. Aun así, esta plataforma es una opción muy apetecible para los usuarios que necesitan poner a punto un PC con una capacidad de procesamiento multihilo muy alta. Las aplicaciones de modelado y renderizado en 3D, el software de edición de vídeo y las herramientas de animación son algunas de las que sacan más partido a las capacidades de estos chips de AMD.

Ya hemos revisado las interfaces y los protocolos utilizados por las unidades SSD que podemos instalar en nuestro PC, pero aún nos queda un apartado por resolver: el formato de la unidad de estado sólido. Las de tipo SATA las podemos encontrar en 1,8, 3,5 y 2,5 pulgadas, pero las más populares son estas últimas. Además, los grosores más extendidos son 9,5 y 7 mm. Sin embargo, ninguno de estos formatos puede hacer sombra al factor de forma M.2, que está disponible tanto para enlaces SATA como PCI Express (estos últimos con interfaz lógica NVMe), y que es el que reina actualmente en el mercado.

Las unidades SSD M.2 son fácilmente reconocibles porque utilizan una placa de circuito impreso rectangular no muy diferente a la de un módulo de memoria, pero con los contactos de conexión con la placa base en uno de sus extremos. La unidad SSD de la siguiente fotografía tiene factor de forma M.2 e interfaz lógica NVMe.

Las unidades SSD tienen que ser necesariamente las auténticas protagonistas de un artículo dedicado al almacenamiento secundario de un PC, por lo que antes de seguir adelante para revisar qué pueden ofrecernos los discos duros tradicionales y los discos híbridos merece la pena que repasemos brevemente algunos consejos que pueden ayudarnos a encontrar el dispositivo de estado sólido que encaja mejor en nuestro equipo. Estas son nuestras sugerencias:

El mejor rendimiento nos los ofrece la combinación de la interfaz PCI Express y el protocolo de control NVMe. Afortunadamente ya no tenemos que invertir una fortuna para hacernos con una unidad SSD con unas velocidades de lectura y escritura secuencial cercanas a los 3.500 MB/s, por lo que es una opción muy apetecible si encaja en nuestro presupuesto. Crucemos los dedos para que en el futuro bajen más de precio.
Algunos fabricantes reflejan el rendimiento de sus unidades SSD en las especificaciones indicándonos el número de operaciones de entrada y salida que son capaces de llevar a cabo en un segundo (IOPS). Este parámetro es muy útil para evaluar el rendimiento de la unidad al enfrentarse a la lectura y la escritura aleatoria, por lo que merece la pena que lo tengamos en cuenta. Aunque, de nuevo, las unidades PCIe NVMe ganan por goleada a las demás. Como medidas orientativas, una unidad PCIe 3.0 NVMe suele rozar los 600.000 IOPS en operaciones de lectura aleatoria; un SSD con interfaz SATA los 90.000 IOPS; y un disco duro mecánico SATA oscila entre 80 y 130 IOPS.
Otro parámetro al que nos interesa prestar atención antes de elegir nuestra unidad SSD es su fiabilidad. Los fabricantes suelen indicarla como MTBF (Mean Time Between Failures), que es un valor que refleja el tiempo medio que transcurre entre fallos de la unidad. Cuanto más alto sea, mejor. También podemos encontrar unidades SSD que expresan la fiabilidad en ciclos de P/E (programación y borrado) o en TW (Terabytes escritos). Esta última unidad refleja cuánta información vamos a poder escribir en el dispositivo antes de que la degradación de los transistores comience a provocar errores. Lo ideal es que estos dos últimos parámetros sean lo más altos posible.
Los discos duros mecánicos
Los discos convencionales son el patito feo en este artículo. Son mucho más lentos, más ruidosos y menos fiables que las unidades SSD, pero tienen una baza a su favor: un coste por gigabyte sensiblemente más bajo que el de las unidades de estado sólido. El precio tanto de los discos duros mecánicos como de las unidades SSD no depende solo de su capacidad, por lo que la relación coste/gigabyte puede variar de unos modelos a otros. Aun así, y solo como orientación, por unos 60 euros podemos hacernos con un disco duro mecánico de 7.200 rpm con interfaz SATA 3 y una capacidad de 2 TB, mientras que una unidad SSD PCIe 3.0 NVMe M.2 con esa misma capacidad raramente baja de los 340 euros (y las hay mucho más caras).

Los discos duros mecánicos son más lentos, más ruidosos y menos fiables que las unidades SSD, pero tienen una baza a su favor: un coste por gigabyte más bajo que el de las unidades de estado sólido

Si hacemos unos números muy sencillos nos saldrá que el disco duro mecánico nos propone un coste de 0,029 euros por gigabyte aproximadamente, mientras que la unidad SSD que hemos escogido tiene un coste por gigabyte de 0,16 euros. Almacenar cada gigabyte de información nos cuesta al menos 5,5 veces más en la unidad SSD que en el disco duro mecánico. Aun así, la diferencia de rendimiento entre ambas unidades de almacenamiento es tan grande y su impacto en nuestra experiencia tan profundo que no os aconsejamos en absoluto que instaléis vuestro sistema operativo y vuestras aplicaciones en una unidad que no sea de estado sólido. Y, a ser posible, de tipo PCIe NVMe.

El panorama pinta mal para los discos duros mecánicos, pero puede ser interesante que uno de ellos trabaje codo con codo con nuestra unidad SSD si adopta el rol de dispositivo de almacenamiento secundario dedicado específicamente a la salvaguarda de nuestros datos. Podemos utilizarlo para hacer copias de seguridad, para poner a buen recaudo nuestra música o nuestras películas, para guardar nuestras fotos… No es una mala idea almacenar los archivos de datos que vamos acumulando de forma constante y que no utilizamos en nuestro día a día en un disco duro mecánico. De esta forma ahorraremos dinero y reservaremos nuestra unidad de estado sólido para el software con el propósito de que el rendimiento de nuestro PC no se resienta.

Los discos duros híbridos SSHD
Combinar el coste por gigabyte de los discos duros mecánicos y las prestaciones de las unidades SSD es una idea muy atractiva. Esto es, precisamente, lo que pretenden los discos SSHD (Solid-State Hybrid Drive), unas unidades de almacenamiento híbridas que recurren a ambas tecnologías. Su factor de forma es el mismo de los discos duros convencionales, por lo que están disponibles en 2,5 y 3,5 pulgadas, pero lo que realmente los hace diferentes es que además de utilizar los platos, los cabezales de lectura/escritura y los demás componentes de un disco duro mecánico incorporan una placa de circuito impreso con varios chips NAND Flash muy similares a los que podemos encontrar dentro de las unidades de estado sólido.

Esta pequeña unidad SSD integrada dentro del disco duro mecánico se comporta como una memoria caché diseñada para almacenar los datos a los que accedemos con más frecuencia. De esta forma, cuando la información solicitada por la CPU reside en los chips NAND la velocidad a la que la unidad híbrida la entrega es similar a la de una unidad SSD con interfaz SATA. Sin embargo, la capacidad conjunta de estos chips es muy inferior a la capacidad total del disco híbrido, que suele oscilar entre 500 GB y 2 TB, por lo que el rendimiento de la unidad cuando debe entregar los datos que no han sido previamente cargados en los chips NAND es similar al de un disco duro mecánico.

Las unidades de almacenamiento híbridas tienen dos bazas a su favor: son sensiblemente más baratas que las unidades SSD con la misma capacidad y nos ofrecen un rendimiento atractivo siempre que los datos que solicitamos estén en la caché NAND Flash. Esto habitualmente les permite arrojar un tiempo de inicio tanto del sistema operativo como de las aplicaciones mejor que el de los discos duros convencionales. Sin embargo, la principal pega que podemos ponerles es que su productividad decae mucho cuando es necesario recurrir a la información que contienen los platos, por lo que su rendimiento global es muy inferior al que nos ofrece las unidades de estado sólido, especialmente las PCIe 3.0/4.0 con interfaz lógica NVMe.

En nuestra opinión los discos duros híbridos no son una alternativa a las unidades SSD. No cabe ninguna duda de que lo ideal es que el dispositivo de almacenamiento principal de nuestro PC sea una unidad de estado sólido lo más rápida posible, por lo que los discos SSHD pueden ser interesantes como dispositivo de almacenamiento complementario siempre y cuando no nos baste con la capacidad de nuestro SSD. En ese escenario de uso tienen sentido si su precio no es muy superior al de un disco duro convencional de la misma capacidad. El sistema operativo y las aplicaciones de nuestro PC residirán en la unidad de estado sólido, por lo que el impacto que tendría la unidad híbrida en las prestaciones globales del equipo no será mucho más beneficioso que el de un disco duro mecánico tradicional.

La tecnología RAID
Buena parte de las placas base para microprocesadores de Intel y AMD que podemos encontrar actualmente en las tiendas nos permite habilitar varios modos RAID (Redundant Array of Independent Disks) en nuestro PC. Esta tecnología ha sido diseñada para combinar varios discos duros o unidades SSD con el propósito de obtener beneficios que quedan fuera del alcance de una única unidad de almacenamiento. Algunas de esas ventajas son un rendimiento más alto, una mayor integridad de los datos y una tolerancia a fallos mejor, pero en un escenario de uso no profesional habitualmente su cualidad más apreciada es la altísima velocidad de lectura y escritura que nos permite alcanzar.

La tecnología RAID contempla varias decenas de configuraciones que nos permiten combinar nuestras unidades de almacenamiento de muchas maneras diferentes descritas en los niveles RAID estándar, anidados y propietarios. Las placas base para equipos de escritorio suelen soportar los modos RAID 0, 1, 1+0, 5 y 50, pero los más utilizados y los que, por tanto, nos interesa conocer, son los dos primeros. El modo RAID 0 también se conoce como striping, y consiste en distribuir los datos en varias unidades de almacenamiento para que el acceso simultáneo a todas ellas nos permita alcanzar unas velocidades de lectura y escritura mucho más altas. Si nuestro PC tiene dos unidades SSD configuradas en RAID 0 el sistema operativo solo verá una única unidad lógica cuyo tamaño será la suma de las capacidades de las dos unidades de estado sólido.

A diferencia de RAID 0, el modo RAID 1 no persigue incrementar las prestaciones del subsistema de almacenamiento secundario; pretende salvaguardar nuestros datos con la máxima eficacia posible. Y para lograrlo recurre a una estrategia sencilla: aplica redundancia. La forma en que se implementa consiste en escribir los datos simultáneamente en dos o más unidades de almacenamiento, como si se tratase de un espejo que duplica el contenido, de ahí que este modo RAID también se conozca como mirroring. RAID 1 es interesante si necesitamos proteger nuestra información y nos viene bien tener varias unidades de almacenamiento con el mismo contenido, pero si aspiramos a que nuestro PC nos ofrezca las mejores prestaciones posibles la mejor elección es RAID 0, que puede llegar casi a duplicar las velocidades de lectura y escritura de una única unidad SSD.

Esta es la capacidad que os proponemos para vuestro PC
El espacio de almacenamiento secundario no suele sobrar. Siempre es preferible que seamos generosos cuando nos proponemos resolver este subsistema de nuestro equipo, pero hay un problema: el precio de las unidades SSD se incrementa mucho a medida que optamos por una de mayor capacidad. Por esta razón es importante que fijemos un límite inferior que delimite la capacidad mínima que debe tener el subsistema de almacenamiento secundario de nuestro PC.

El punto de partida que os sugerimos para el almacenamiento secundario de vuestro PC son 500 GB para ofimática y 1 TB para creación de contenidos y juegos

Según nuestra experiencia lo ideal es que la unidad SSD de un equipo para ofimática, navegación en Internet y reproducción de contenidos no tenga menos de 500 GB de capacidad. Y si vamos a utilizar nuestro PC para crear contenidos o jugar es preferible que apostemos por una unidad de estado sólido de 1 TB. No obstante, estas cifras solo son el punto de partida que os sugerimos. Si vuestro presupuesto os permite ser un poco más ambiciosos, mucho mejor.

Responder Citando
  #10  
Antiguo 12-Jul-2020, 20:28
Avatar de winche
winche winche está desconectado
 
Fecha de Ingreso: 12-August-2019
Mensajes: 7,184
Gracias: 0
Agradeció 7 veces en 6 publicaciones
Moil la caja y la fuente de alimentación

la caja y la fuente de alimentación



Poner a punto un PC equilibrado, potente y estable requiere no dejar nada al azar. Tampoco la caja y la fuente de alimentación. Otros componentes, como la CPU, la GPU o la unidad SSD, tienen un impacto más evidente en nuestra experiencia, pero los dos elementos a los que vamos a dedicar esta entrega de la guía también son muy importantes. De hecho, en gran medida la capacidad de expansión y la estabilidad de nuestro ordenador están en sus manos, por lo que nos interesa elegirlos bien para evitar que las expectativas que hemos depositado en nuestro nuevo equipo se vayan a pique.

Este artículo es la sexta entrega de una guía extensa en la que los principales componentes y los periféricos más relevantes de un PC tendrán su dosis de protagonismo. Nuestra intención es ayudar a los usuarios que han decidido montar un equipo a la medida a encontrar los componentes que resuelven mejor sus necesidades y encajan mejor en su presupuesto, y para lograrlo dedicaremos a la mayor parte de ellos un artículo en exclusiva. Las protagonistas indiscutibles de este artículo son la caja y la fuente de alimentación de la misma forma en que en las anteriores entregas de la guía hablamos de la placa base, el procesador, la memoria principal, la tarjeta gráfica y el almacenamiento secundario.

La caja es mucho más que el contenedor de los componentes de nuestro PC
Todos conocemos el rol más evidente que tiene la caja de nuestro PC: ofrecer un soporte físico a los demás componentes del equipo, como la placa base, las unidades de almacenamiento secundario o el sistema de refrigeración. Sin embargo, su responsabilidad no acaba aquí. Si la elegimos dejándonos llevar únicamente por su diseño estético y su precio corremos el riesgo de que cuando hayamos ensamblado nuestro ordenador y comencemos a utilizarlo la caja no esté a la altura. Quizá no favorezca la correcta refrigeración de los componentes más delicados de nuestro PC. O puede que a medio plazo limite su capacidad de expansión. Esto es lo que os proponemos tener en cuenta para elegir la caja ideal.

También es un escudo frente a la electricidad estática
Los paneles de la mayor parte de las cajas para PC que encontramos en las tiendas son de acero o aluminio, aunque también recurren a materiales como el vidrio templado o el metacrilato para permitirnos ver su interior a través de una o más ventanas laterales. Lo interesante es que hay una razón de peso para que las cajas sean metálicas: se comportan como una jaula de Faraday capaz de proteger de la electricidad estática presente en el ambiente los componentes más delicados de las placas de circuito impreso de nuestro ordenador. La posibilidad de que una descarga electrostática pueda dañar algún elemento del equipo es real, lo que explica por qué las personas que se dedican a ensamblar y manipular profesionalmente el interior de los ordenadores suelen utilizar pulseras de descarga electroestática.

Las cajas metálicas se comportan como una jaula de Faraday capaz de proteger de la electricidad estática los componentes más delicados de nuestro ordenador

Lo que acabamos de repasar nos lleva a nuestra primera sugerencia: es preferible evitar las cajas para PC con paneles de plástico debido a que no cumplen esta función. Prácticamente todas las soluciones que nos proponen las marcas que tienen productos de calidad recurren a los paneles de metal y descartan el policarbonato. La única concesión suelen hacerla en las ventanas que nos permiten observar su interior, y que, como acabamos de ver, recurren al vidrio templado o al metacrilato. Solo en las cajas de muy bajo precio y discutible calidad encontraremos paneles de plástico, por lo que es fácil evitarlas. Además, como vamos a ver en la siguiente sección, la utilización de paneles de metal mejora la capacidad refrigerante de la caja gracias al alto índice de conductividad térmica que tienen el acero y el aluminio.

Una buena caja nos ayudará a mantener bajo control la temperatura de nuestro PC
La eficacia de un buen sistema de refrigeración para CPU o GPU puede verse comprometida si la caja en la que hemos instalado nuestro microprocesador y nuestra tarjeta gráfica no está a la altura. Estos son los dos elementos del equipo que más energía disipan en forma de calor, aunque los chips de memoria que operan a altas frecuencias de reloj y las unidades SSD, especialmente las que utilizan la interfaz PCI Express 4.0, también pueden calentarse mucho. Todos estos y otros componentes del PC, como el chipset de la placa base, disipan una parte de la energía que consumen en forma de calor, y ese calor contribuye a incrementar la temperatura del aire alojado en el interior de la caja, sobre todo cuando sometemos a nuestro ordenador a una carga de trabajo importante.

La responsabilidad de evacuar con eficacia ese aire caliente y renovarlo con aire más frío procedente del exterior del ordenador recae en la caja. Por este motivo una de las características a las que os aconsejamos prestar más atención cuando os embarquéis en la tarea de haceros con una nueva caja es, precisamente, su eficacia refrigerante. Como acabamos de ver apostar por paneles metálicos ayuda gracias al alto índice de conductividad térmica que tienen tanto el acero como el aluminio, pero lo más importante es que el fabricante de la caja haya sido meticuloso a la hora de diseñar el circuito de refrigeración del aire. Y en este contexto no solo importa el número de ventiladores que vamos a poder instalar en la caja, sino también su posición y su calidad.



El punto de partida para garantizar que el aire caliente del interior de la caja se renueva correctamente con aire más frío procedente del exterior son dos o más ventiladores que habitualmente están enfrentados. Unos sacan fuera de la caja el aire caliente, y otros introducen en su interior aire más frío. Que necesitemos o no más ventiladores para mantener bajo control la temperatura interior de nuestra caja incluso en situaciones de máximo estrés dependerá de la energía que disipan en forma de calor los componentes de nuestro PC. Es posible que si optamos por un microprocesador con un TDP alto, una tarjeta gráfica muy potente y una o varias unidades SSD de última hornada nos interese barajar la posibilidad de instalar en nuestra caja más de dos ventiladores.

Los modelos de gama alta suelen incorporar de serie hasta cuatro o más ventiladores, y los de las gamas de entrada y media habitualmente tienen un par de ventiladores, aunque suelen permitir la instalación opcional de más si el usuario lo cree necesario. Una vez que hemos llegado a este punto hay algo que a los usuarios nos interesa tener en cuenta: no todos los ventiladores para cajas son iguales. Y no lo son porque habitualmente desplazan un caudal de aire diferente y emiten un nivel de ruido también distinto. El caudal de aire que son capaces de desplazar depende del diseño aerodinámico de sus palas, del diámetro del ventilador y de su velocidad de giro. Un régimen de giro más alto ayuda a mover más aire, pero también suele provocar que el ventilador emita más ruido.

Los ventiladores instalados en la caja tienen la responsabilidad de evacuar el aire caliente y renovarlo con aire más frío procedente del exterior

Apostar por ventiladores de caja de calidad siempre es una buena idea. Los componentes de nuestro PC nos lo agradecerán. Y posiblemente nuestros oídos también lo harán. Si la caja que os gusta para vuestro PC incorpora pocos ventiladores, o bien los que trae de serie no son gran cosa, no dudéis en barajar la posibilidad de instalar más unidades. O, incluso, de cambiar los ventiladores que equipa por otros más silenciosos o con una mayor capacidad refrigerante. O, mejor aún, con ambas propiedades simultáneamente. En cualquier caso, es importante que tengamos en cuenta que lo realmente crucial es conseguir que el circuito que sigue el aire en el interior de la caja garantice su renovación al ritmo adecuado.

Sabremos que el sistema de refrigeración de la caja de nuestro PC cumple su cometido correctamente cuando trabajando codo con codo con el ventilador de la CPU y la refrigeración de la tarjeta gráfica consigue que estos dos componentes estén por debajo de su umbral máximo de temperatura incluso bajo un estrés intenso. En este contexto contamos con dos aliados: los sensores que se responsabilizan de monitorizar la temperatura del núcleo de la CPU y la GPU, y las tecnologías que nos permiten actuar sobre el régimen de giro de los ventiladores de la caja. La información que recogen los sensores de temperatura podemos leerla utilizando las herramientas desarrolladas por los fabricantes de placas base y tarjetas gráficas, AMD, Intel o NVIDIA, o bien recurriendo a software de terceros. Una aplicación que a nosotros nos gusta mucho por la gran cantidad de información que consigue recopilar es HWiNFO, que, además, es gratuita.



Otra gran aliada que puede ayudarnos a preservar la trayectoria del aire en el interior de la caja de nuestro PC y minimizar el ruido que emiten los ventiladores es la tecnología que nos permite actuar sobre su velocidad de giro, bien regulando el voltaje, bien mediante la modulación por ancho de pulsos (PWM o Pulse-Width Modulation). No obstante, hay algo importante que nos interesa tener en cuenta: cuando actuamos sobre un ventilador un régimen de giro más bajo conlleva un nivel de ruido más reducido, pero también una inferior capacidad refrigerante debido a que desplaza un caudal de aire menor.

Un régimen de giro más bajo conlleva un nivel de ruido más reducido, pero también una inferior capacidad refrigerante
Como acabamos de ver, es importante que algunos de los ventiladores de nuestra caja introduzcan aire procedente del exterior para renovar el caliente de su interior, pero este aire no entra completamente limpio; contiene partículas en suspensión que con el tiempo pueden acabar obstaculizando el giro del rotor de los ventiladores. Por esta razón, es aconsejable que los ventiladores que introducen aire en la caja incorporen filtros de polvo. Los tengan o no lo ideal es que periódicamente accedamos al interior de nuestro PC para eliminar el polvo que poco a poco se habrá acumulado.

Dos herramientas que pueden ayudarnos a hacerlo son una brocha muy suave y un espray de aire comprimido. En lo que se refiere a la frecuencia es difícil fijar una norma porque el ritmo con el que se acumula el polvo en el interior del equipo depende del polvo presente en nuestro espacio de trabajo, y también del tiempo que utilizamos el ordenador. En cualquier caso, limpiar el interior del PC cada seis meses debería ser suficiente en la mayor parte de los escenarios de uso siempre y cuando nos esmeremos en la eliminación del polvo que se acumula en las palas y el rotor de todos los ventiladores del equipo.

Un último apunte antes de pasar a la siguiente sección del artículo: no todas las cajas para PC son capaces de acoger en su interior un sistema de refrigeración líquida avanzado o modular. Incluso podríamos tener problemas si nos decantamos por un ventilador por aire para nuestra CPU muy voluminoso. Las soluciones de refrigeración líquida compactas o todo en uno encajan sin dificultad en un abanico muy amplio de cajas, pero si hemos decidido instalar un sistema avanzado es importante que nos cercioremos de que la caja que hemos elegido nos va a permitir hacerlo.

Formato, iluminación RGB, conectividad y otras características a tener en cuenta
Afortunadamente, en lo que se refiere al diseño de las cajas tenemos un abanico muy amplio de opciones a nuestro alcance. Hay cajas con un diseño sobrio; otras apuestan por una estética más llamativa, con una ventana lateral que permite ver su interior y múltiples canales de iluminación RGB; también las hay muy compactas, de tamaño medio, de tipo servidor… El abanico de opciones es grande, por lo que antes de elegir la caja de nuestro PC nos interesa tener una idea certera acerca de los formatos que encajan mejor con un ordenador de consumo.

Las más compactas son las mini-ITX y las micro-ATX. Las primeras requieren que instalemos una placa base mini-ITX, que mide solo 170 x 170 mm, lo que nos permite poner a punto un PC realmente compacto, pero con unas capacidades de expansión reducidas. Las cajas micro-ATX son un poco más voluminosas que las mini-ITX, lo que amplía un poco su capacidad de expansión, pero manteniendo un volumen contenido. De hecho, las placas base micro-ATX pueden tener un tamaño máximo de 244 x 244 mm. Las cajas en formato mini-ITX y micro-ATX son adecuadas si necesitamos un PC compacto, nuestras necesidades de expansión son comedidas y no tenemos la intención de hacernos con componentes capaces de disipar mucha energía en forma de calor.


El formato de caja más utilizado en los equipos con vocación ofimática, para juegos o creación de contenidos es el ATX, que permite la instalación de placas base con un tamaño máximo de 305 x 244 mm. Su capacidad de expansión es notable, nos permite instalar sistemas de refrigeración voluminosos, y, por supuesto, encaja a la perfección con microprocesadores con un TDP importante y con tarjetas gráficas potentes y voluminosas. En una caja ATX no podemos instalar solo placas base ATX; también permite la instalación de placas mini-ITX y micro-ATX. Las cajas en formato de media torre que podemos encontrar en las tiendas son ATX. Por último, las cajas E-ATX o de torre completa nos permiten instalar placas base de hasta 330 x 305 mm. Son las que tienen la mayor capacidad de expansión, pero también son las más voluminosas, por lo que suelen utilizarse en los servidores y algunas estaciones de trabajo.

En una caja ATX no podemos instalar solo placas base en formato ATX; también permite la instalación de placas mini-ITX y micro-ATX

Las cajas relativamente recientes suelen resolver bien la conectividad. La mayor parte de ellas incorpora un panel en la parte frontal o superior que habitualmente nos permite conectar dispositivos USB, auriculares y un micrófono, entre otras opciones, sin necesidad de acceder al panel posterior de la caja. Como es lógico, internamente estos puertos están conectados a la placa base. Casi todas las cajas tienen este panel, pero no está de más que nos cercioremos de que el modelo que nos gusta incorpora la dotación de conectores que necesitamos en nuestro día a día. Si vamos a colocar nuestro PC en un lugar poco accesible, como, por ejemplo, debajo de nuestra mesa, tener esos puertos al alcance de la mano nos hará la vida un poco más fácil.

Por último, a muchos aficionados a los juegos y el overclocking les gusta cuidar al máximo la estética y la iluminación de su PC. Hay kits que nos permiten añadir iluminación RGB de una forma sencilla a prácticamente cualquier caja, pero también podemos hacernos con un chasis que ya incorpora la iluminación preinstalada. Algunas cajas, incluso, incorporan una controladora y varios canales de iluminación RGB cuyo comportamiento podemos predefinir de forma independiente. Si nos hacemos con una de estas cajas y elegimos componentes que ya incorporan sus propios LED (muchas placas base, tarjetas gráficas y ventiladores los tienen) podremos personalizar la estética de nuestro equipo al máximo.



Cómo encontrar la fuente de alimentación ideal para nuestro PC
Potente, eficiente, silenciosa, modular, con componentes de calidad que nos garanticen una vida útil muy prolongada… No es difícil definir cómo debe ser una buena fuente de alimentación. Muchas nos prometen todo esto, y, sin embargo, no todas dan la talla cuando el estrés al que se ven sometidas es considerable. El rol de la fuente de alimentación de nuestro PC es crucial debido a que sobre ella recae la responsabilidad de transformar la corriente alterna que recibe de la red eléctrica en la corriente continua con la que trabajan los componentes de nuestro ordenador.

La fuente transforma la corriente alterna de la red eléctrica en la corriente continua con la que trabajan los componentes de nuestro PC
Además, debe ser capaz de regular el voltaje con mucha precisión para proporcionar a cada uno de ellos una señal completamente estable y libre del más mínimo ruido eléctrico. Y no lo tiene fácil. Nuestra infraestructura eléctrica es un medio muy agresivo que no solo se ve expuesto a las perturbaciones que acarrea el transporte de la energía desde las centrales de generación hasta nuestras casas; cada uno de los electrodomésticos y equipos electrónicos que conectamos inyecta ruido en la red. Los que más parásitos eléctricos introducen en la instalación son los electrodomésticos que utilizan motores eléctricos.

La fuente de alimentación de nuestros ordenadores está obligada a lidiar con todo esto, lo que nos lleva a nuestro primer consejo: no merece la pena escatimar con la parte del presupuesto de nuestro PC que dedicamos a este componente. Es difícil encontrar una fuente de buena calidad por menos de 50 euros, por lo que este es el punto de partida que os sugerimos si los componentes de vuestro equipo tienen un consumo moderado. A partir de ahí es razonable invertir en la fuente de alimentación de 70 a 90 euros, o incluso más dinero si nos hemos decantado por componentes con una demanda energética alta. Aun así, su precio no siempre está respaldado por componentes de calidad, por lo que es una buena idea consultar la opinión de los usuarios y los análisis de los medios especializados antes de elegir nuestra fuente.



En su capacidad de entrega de potencia y su eficiencia vamos a indagar en los siguientes apartados de esta sección, pero aún nos quedan dos características más a las que os aconsejamos prestar atención. Una de ellas es el nivel de ruido máximo emitido por el ventilador que se responsabiliza de refrigerar la fuente de alimentación. La diferencia entre unas soluciones y otras puede ser notable, por lo que, en nuestra opinión, merece la pena invertir unos euros más si este esfuerzo nos garantiza un nivel de ruido unos decibelios más bajo. Algunas fuentes de gama media y alta monitorizan en tiempo real su temperatura interna para conseguir que el ventilador solo comience a girar cuando es realmente necesario. De esta forma cuando la carga es baja su nivel de ruido es casi imperceptible.

La otra característica que os sugerimos es que si vuestro presupuesto os lo permite os decantéis por una fuente de alimentación modular. Lo que las hace diferentes de las tradicionales es que no incorporan ningún cable fijo; todos son extraíbles. De esta forma podemos utilizar únicamente los cables que necesitamos para alimentar los componentes de nuestro PC. Ni uno más, ni uno menos. Utilizar los cables que son estrictamente necesarios nos permite mantener el interior de nuestro PC más ordenado y despejado, facilitando de esta forma el correcto flujo del aire y optimizando la eficiencia de nuestro sistema de refrigeración.

Si nuestro presupuesto no nos permite hacernos con una fuente completamente modular también podemos optar por una semimodular. Son más baratas, pero incorporan varios cables fijos, al menos los de la alimentación de la placa base y la CPU porque son algunos de los que necesariamente vamos a tener que utilizar. En cualquier caso, si os veis obligados a elegir entre una fuente de alimentación completamente modular de calidad media y una solución semimodular de más calidad, merece la pena que os quedéis con esta última. Lo más importante es que este componente lleve a cabo su función primordial con la máxima eficacia posible.

Psmodular
Cómo calcular la potencia que necesitamos
Una parte de la energía que la fuente de alimentación toma de la red eléctrica se disipa en forma de calor como resultado del trabajo que lleva a cabo el circuito eléctrico que se encarga de la conversión de la corriente alterna en continua y de la regulación del voltaje. Este comportamiento nos da una pista clara acerca de la forma en que debemos calcular su potencia: la fuente de nuestro PC debe estar sobredimensionada. Si el consumo conjunto de todos los componentes de nuestro PC bajo máximo estrés es, por ejemplo, 520 vatios, no debemos conformarnos con una fuente con una potencia de salida máxima de 550 vatios porque es muy probable que no dé la talla y nos juegue una mala pasada.

La eficiencia de las fuentes de alimentación no es fija; fluctúa a medida que varía la carga a la que las sometemos. La mayor parte alcanza su región de máxima eficiencia con una carga que oscila entre el 30 y el 70%

La eficiencia de las fuentes de alimentación no es fija; fluctúa a medida que varía la carga a la que las sometemos. La mayor parte de las fuentes alcanza su región de máxima eficiencia con una carga que oscila entre el 30 y el 70%, por lo que lo ideal es que los consumos típico y máximo de nuestro equipo queden confinados dentro de este rango de potencias de salida. No es fácil conseguir la información que necesitamos para llevar a cabo estos cálculos, por lo que os recomendamos que además de consultar los consumos que anuncian los fabricantes de los componentes de vuestro PC recurráis a los análisis de los medios especializados para conseguir cifras lo más certeras posible.

Una vez que hemos calculado el consumo máximo conjunto de los componentes de nuestro PC podemos hacer una operación muy sencilla que nos va a sugerir cuál podría ser la capacidad máxima de entrega de potencia de nuestra fuente de alimentación:

Potencia de la fuente = (Consumo máximo de nuestro equipo x 100) / 70

Si seguimos adelante con nuestro ejemplo y asumimos que los componentes de nuestro PC consumen bajo máximo estrés alrededor de 520 vatios el cálculo sería el siguiente:

Potencia de la fuente = (520 vatios x 100) / 70 = 742,85 vatios

En principio una fuente de alimentación de 750 vatios debería ser más que suficiente para garantizar un suministro estable de energía a todos los componentes de nuestro PC. Y, además, la fuente debería trabajar la mayor parte del tiempo dentro de la región de máxima eficiencia. Como es lógico nuestro ordenador no va a estar sometido todo el tiempo a la máxima carga posible, por lo que es importante alinear el consumo máximo que hemos calculado con el límite superior de la región de máxima eficiencia de la fuente. En cualquier caso, este método no es infalible. Solo es un procedimiento orientativo y sencillo que a nosotros nos funciona bien, y creemos que a vosotros también puede resultaros útil.

La eficiencia de las fuentes de alimentación, explicada
Una fuente de alimentación tendrá una eficiencia del 100% si es capaz de entregar a su salida toda la energía eléctrica que toma de la red. Sin pérdida de ningún tipo. Desafortunadamente esto no es posible debido a que, como hemos visto, el circuito eléctrico que se responsabiliza de llevar a cabo la conversión de la corriente alterna en continua y de la regulación del voltaje provoca que una parte de la energía se disipe en forma de calor. Aun así, no todas las fuentes tienen la misma eficiencia. Algunas consiguen llevar a cabo el trabajo que les encomendamos con más eficiencia que otras, y la certificación 80 PLUS puede ayudarnos a identificarlas.

Esta etiqueta nació en 2004 como una propuesta de la consultora Ecos Consulting, aunque la organización que expide esta certificación y se encarga de poner a prueba las fuentes de alimentación es el laboratorio estadounidense EPRI. Los fabricantes de fuentes no están obligados a someter a sus productos a esta prueba, pero a muchos les interesa conseguir la certificación 80 PLUS porque saben que algunos usuarios la buscamos. Y, como es lógico, ayuda a vender fuentes de alimentación. Lo interesante es que esta certificación nos indica cuál es la eficiencia de una fuente cuando se ve sometida a una carga del 10%, 20%, 50% y 100%. Y dependiendo del resultado que arroje en la prueba obtendrá una etiqueta 80 PLUS u otra. Esta tabla resume la eficiencia que debe entregar una fuente de alimentación para conseguir una de las etiquetas de esta certificación:

CERTIFICACIÓN CARGA DEL 10% CARGA DEL 20% CARGA DEL 50% CARGA DEL 100%
80 PLUS No disponible 82% 85% 82%
80 PLUS BRONCE No disponible 85% 88% 85%
80 PLUS PLATA No disponible 87% 90% 87%
80 PLUS ORO No disponible 90% 92% 89%
80 PLUS PLATINO No disponible 92% 94% 90%
80 PLUS TITANIO 90% 94% 96% 94%

Como podemos ver en la tabla, las fuentes de alimentación que consiguen la etiqueta 80 PLUS GOLD son más eficientes que las que tienen la certificación 80 PLUS BRONZE. Y las 80 PLUS TITANIUM nos prometen una eficiencia aún más alta que las GOLD. Eso sí, todas ellas deben tener una eficiencia mínima del 80%. La metodología de pruebas utilizada por EPRI para expedir estas etiquetas ha sido puesta en duda porque, según algunos medios críticos, la temperatura a la que se llevan a cabo los tests no refleja fielmente las condiciones de trabajo reales de las fuentes de alimentación en el interior de nuestros ordenadores. Y es posible que tengan razón. Aun así, por el momento esta certificación es la herramienta más fiable que tenemos a la hora de valorar la eficiencia de las fuentes, por lo que, en nuestra opinión, merece la pena tenerla en cuenta.

Responder Citando
Respuesta


Normas de Publicación
No puedes crear nuevos temas
No puedes responder mensajes
No puedes subir archivos adjuntos
No puedes editar tus mensajes

Los Códigos BB están Activado
Las Caritas están Activado
[IMG] está Activado
El Código HTML está Activado

Ir al Foro

La franja horaria es GMT +2. Ahora son las 14:13.
Powered by : vBulletin; Versión 3.8.11
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Shoutbox provided by vBShout v6.2.18 (Lite) - vBulletin Mods & Addons Copyright © 2024 DragonByte Technologies Ltd.
@apurados.com
Design by HTWoRKS
Modificado por Apurados